67 resultados para slip-casting


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Brushless Doubly-Fed Induction Generator (BDFIG) shows commercial promise as replacement for doublyfed slip-ring generators for wind power applications by offering reduced capital and operational costs due to its brushless operation. In order to facilitate its commercial deployment, the capabilities of the BDFIG system to comply with grid code requirements have to be assessed. This paper, for the first time, studies the performance of the BDFIG under grid fault ride-through and presents the dynamic behaviour of the machine during three-phase symmetrical voltage dips. Both full and partial voltage dips are studied using a vector model. Simulation and experimental results are provided for a 180 frame BDFIG.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An analysis is given of velocity and pressure-dependent sliding flow of a thin layer of damp granular material in a spinning cone. Integral momentum equations for steady state, axisymmetric flow are derived using a boundary layer approximation. These reduce to two coupled first-order differential equations for the radial and circumferential sliding velocities. The influence of viscosity and friction coefficients and inlet boundary conditions is explored by presentation of a range of numerical results. In the absence of any interfacial shear traction the flow would, with increasing radial and circumferential slip, follow a trajectory from inlet according to conservation of angular momentum and kinetic energy. Increasing viscosity or friction reduces circumferential slip and, in general, increases the residence time of a particle in the cone. The residence time is practically insensitive to the inlet velocity. However, if the cone angle is very close to the friction angle then the residence time is extremely sensitive to the relative magnitude of these angles. © 2011 Authors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Based on an analysis of the experimental results of a proposed bond test method, significant differences are shown to exist between the local FRP bond stress-slip relationships in the uncracked anchorage regions and in the regions between cracks. The proposed method simulates the bond behavior between the flexural cracks and anchorage regions of a flexurally FRP-strengthened RC beam. The boundary conditions, including the presence of cracks and steel, are shown to have significant effects on the local bond stress-slip models. The results showed that, at the same force, the bond stresses in the regions between cracks were lower than in regions outside the cracks, so the debonding formed in the anchorage regions. The local bond stress-slip models in the anchorage regions can be obtained from the conventional bond test methods but these do not mimic the conditions between the cracks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of size and slip system configuration on the tensile stress-strain response of micron-sized planar crystals as obtained from discrete dislocation plasticity simulations is presented. The crystals are oriented for either single or symmetric double slip. With the rotation of the tensile axis unconstrained, there is a strong size dependence, with the flow strength increasing with decreasing specimen size. Below a certain specimen size, the flow strength of the crystals is set by the nucleation strength of the initially present Frank-Read sources. The main features of the size dependence are the same for both the single and symmetric double slip configurations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is shown that reflective liquid crystal on silicon (LCOS) spatial light modulator (SLM) based interconnects or fiber switches that use defocus to reduce crosstalk can be evaluated and optimized using a fractional Fourier transform if certain optical symmetry conditions are met. Theoretically the maximum allowable linear hologram phase error compared to a Fourier switch is increased by a factor of six before the target crosstalk for telecom applications of -40 dB is exceeded. A Gerchberg-Saxton algorithm incorporating a fractional Fourier transform modified for use with a reflective LCOS SLM is used to optimize multi-casting holograms in a prototype telecom switch. Experiments are in close agreement to predicted performance. © 2012 Optical Society of America.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this Letter, the rarefaction and roughness effects on the heat transfer process in gas microbearings are investigated. A heat transfer model is developed by introducing two-variable Weierstrass-Mandelbrot (W-M) function with fractal geometry. The heat transfer problem in the multiscale self-affine rough microbearings at slip flow regime is analyzed and discussed. The results show that rarefaction has more significant effect on heat transfer in rough microbearings with lower fractal dimension. The negative influence of roughness on heat transfer found to be the Nusselt number reduction. The heat transfer performance can be optimized with increasing fractal dimension of the rough surface. © 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interbedded layers of glacial deposits and marine or glacimarine clay layers are a common feature of offshore sediment. Typically, offshore marine clays are lightly overconsolidated sensitive clay. Some case histories on submarine landslides show that the slip surface passes through these marine clay layers. In this paper a model is proposed for post-peak strain softening behavior of marine sensitive clay. The slope failure mechanism is examined using the concept of shear band propagation. It is shown that shear band propagation and post-peak stress-strain behavior of clay layers are two major factors in submarine slope stability analysis. Copyright © 2012 by the International Society of Offshore and Polar Engineers (ISOPE).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A numerical model is developed to analyse the interaction of artificial cilia with the surrounding fluid in a three-dimensional setting in the limit of vanishing fluid inertia forces. The cilia are modelled using finite shell elements and the fluid is modelled using a boundary element approach. The coupling between both models is performed by imposing no-slip boundary conditions on the surface of the cilia. The performance of the model is verified using various reference problems available in the literature. The model is used to simulate the fluid flow due to magnetically actuated artificial cilia. The results show that narrow and closely spaced cilia create the largest flow, that metachronal waves along the width of the cilia create a significant flow in the direction of the cilia width and that the recovery stroke in the case of the out-of-plane actuation of the cilia strongly depends on the cilia width. © 2012 Cambridge University Press.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Our society is addicted to steel. Global demand for steel has risen to 1.4 billion tonnes a year and is set to at least double by 2050, while the steel industry generates nearly a 10th of the world's energy related CO₂ emissions. Meeting our 2050 climate change targets would require a 75% reduction in CO₂ emissions for every tonne of steel produced and finding credible solutions is proving a challenge. The starting point for understanding the environmental impacts of steel production is to accurately map the global steel supply chain and identify the biggest steel flows where actions can be directed to deliver the largest impact. In this paper we present a map of global steel, which for the first time traces steel flows from steelmaking, through casting, forming, and rolling, to the fabrication of final goods. The diagram reveals the relative scale of steel flows and shows where efforts to improve energy and material efficiency should be focused.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many visual datasets are traditionally used to analyze the performance of different learning techniques. The evaluation is usually done within each dataset, therefore it is questionable if such results are a reliable indicator of true generalization ability. We propose here an algorithm to exploit the existing data resources when learning on a new multiclass problem. Our main idea is to identify an image representation that decomposes orthogonally into two subspaces: a part specific to each dataset, and a part generic to, and therefore shared between, all the considered source sets. This allows us to use the generic representation as un-biased reference knowledge for a novel classification task. By casting the method in the multi-view setting, we also make it possible to use different features for different databases. We call the algorithm MUST, Multitask Unaligned Shared knowledge Transfer. Through extensive experiments on five public datasets, we show that MUST consistently improves the cross-datasets generalization performance. © 2013 Springer-Verlag.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Elastocapillary self-assembly is emerging as a versatile technique to manufacture three-dimensional (3D) microstructures and complex surface textures from arrangements of micro- and nanoscale filaments. Understanding the mechanics of capillary self-assembly is essential to engineering of properties such as shape-directed actuation, anisotropic wetting and adhesion, and mechanical energy transfer and dissipation. We study elastocapillary self-assembly (herein called "capillary forming") of carbon nanotube (CNT) microstructures, combining in situ optical imaging, micromechanical testing, and finite element modeling. By imaging, we identify sequential stages of liquid infiltration, evaporation, and solid shrinkage, whose kinetics relate to the size and shape of the CNT microstructure. We couple these observations with measurements of the orthotropic elastic moduli of CNT forests to understand how the dynamic of shrinkage of the vapor-liquid interface is coupled to the compression of the forest. We compare the kinetics of shrinkage to the rate of evporation from liquid droplets having the same size and geometry. Moreover, we show that the amount of shrinkage during evaporation is governed by the ability of the CNTs to slip against one another, which can be manipulated by the deposition of thin conformal coatings on the CNTs by atomic layer deposition (ALD). This insight is confirmed by finite element modeling of pairs of CNTs as corrugated beams in contact and highlights the coupled role of elasticity and friction in shrinkage and stability of nanoporous solids. Overall, this study shows that nanoscale porosity can be tailored via the filament density and adhesion at contact points, which is important to the development of lightweight multifunctional materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Passive steering systems have been used for some years to control the steering of trailer axles on articulated vehicles. These normally use a 'command steer' control strategy, which is designed to work well in steady-state circles at low speeds, but which generates inappropriate steer angles during transient low-speed maneuvers and at high speeds. In this paper, 'active' steering control strategies are developed for articulated heavy goods vehicles. These aim to achieve accurate path following for tractor and trailer, for all paths and all normal vehicle speeds, in the presence of external disturbances. Controllers are designed to implement the path-following strategies at low and high speeds, whilst taking into account the complexities and practicalities of articulated vehicles. At low speeds, the articulation and steer angles on articulated heavy goods vehicles are large and small-angle approximations are not appropriate. Hence, nonlinear controllers based on kinematics are required. But at high-speeds, the dynamic stability of control system is compromised if the kinematics-based controllers remain active. This is because a key state of the system, the side-slip characteristics of the trailer, exhibits a sign-change with increasing speeds. The low and high speed controllers are blended together using a speed-dependent gain, in the intermediate speed range. Simulations are conducted to compare the performance of the new steering controllers with conventional vehicles (with unsteered drive and trailer axles) and with vehicles with command steer controllers on their trailer axles. The simulations show that active steering has the potential to improve significantly the directional performance of articulated vehicles for a wide range of conditions, throughout the speed range. © VC 2013 by ASME.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A small-strain two-dimensional discrete dislocation plasticity (DDP) framework is developed wherein dislocation motion is caused by climb-assisted glide. The climb motion of the dislocations is assumed to be governed by a drag-type relation similar to the glide-only motion of dislocations: such a relation is valid when vacancy kinetics is either diffusion limited or sink limited. The DDP framework is employed to predict the effect of dislocation climb on the uniaxial tensile and pure bending response of single crystals. Under uniaxial tensile loading conditions, the ability of dislocations to bypass obstacles by climb results in a reduced dislocation density over a wide range of specimen sizes in the climb-assisted glide case compared to when dislocation motion is only by glide. A consequence is that, at least in a single slip situation, size effects due to dislocation starvation are reduced. By contrast, under pure bending loading conditions, the dislocation density is unaffected by dislocation climb as geometrically necessary dislocations (GNDs) dominate. However, climb enables the dislocations to arrange themselves into lower energy configurations which significantly reduces the predicted bending size effect as well as the amount of reverse plasticity observed during unloading. The results indicate that the intrinsic plasticity material length scale associated with GNDs is strongly affected by thermally activated processes and will be a function of temperature. © 2013 IOP Publishing Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this article, we examine the phenomenon of single-crystal halide salt wire growth at the surface of porous materials. We report the use of a single-step casting technique with a supramolecular self-assembly gel matrix that upon drying leads to the growth of single-crystal halide (e.g., NaCl, KCl, and KI) nanowires with diameters ~130-200 nm. We demonstrate their formation using electron microscopy and electron-dispersive X-ray spectroscopy, showing that the supramolecular gel stabilizes the growth of these wires by facilitating a diffusion-driven base growth mechanism. Critically, we show that standard non-supramolecular gels are unable to facilitate nanowire growth. We further show that these nanowires can be grown by seeding, forming nanocrystal gardens. This study helps understand the possible prefunctionalization of membranes to stimulate ion-specific filters or salt efflorescence suppressors, while also providing a novel route to nanomaterial growth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Superhydrophobic surfaces are shown to be effective for surface drag reduction under laminar regime by both experiments and simulations (see for example, Ou and Rothstein, Phys. Fluids 17:103606, 2005). However, such drag reduction for fully developed turbulent flow maintaining the Cassie-Baxter state remains an open problem due to high shear rates and flow unsteadiness of turbulent boundary layer. Our work aims to develop an understanding of mechanisms leading to interface breaking and loss of gas pockets due to interactions with turbulent boundary layers. We take advantage of direct numerical simulation of turbulence with slip and no-slip patterned boundary conditions mimicking the superhydrophobic surface. In addition, we capture the dynamics of gas-water interface, by deriving a proper linearized boundary condition taking into account the surface tension of the interface and kinematic matching of interface deformation and normal velocity conditions on the wall. We will show results from our simulations predicting the dynamical behavior of gas pocket interfaces over a wide range of dimensionless surface tensions.