73 resultados para robotics
Resumo:
Data fusion can be defined as the process of combining data or information for estimating the state of an entity. Data fusion is a multidisciplinary field that has several benefits, such as enhancing the confidence, improving reliability, and reducing ambiguity of measurements for estimating the state of entities in engineering systems. It can also enhance completeness of fused data that may be required for estimating the state of engineering systems. Data fusion has been applied to different fields, such as robotics, automation, and intelligent systems. This paper reviews some examples of recent applications of data fusion in civil engineering and presents some of the potential benefits of using data fusion in civil engineering.
Resumo:
This book contains the proceedings of the first Cambridge Workshop on Universal Access and Assistive Technology (CWUAAT), incorporating the fourth Cambridge Workshop on Rehabilitation Robotics, held in Cambridge, England in March 2002.
Resumo:
We propose a principled algorithm for robust Bayesian filtering and smoothing in nonlinear stochastic dynamic systems when both the transition function and the measurement function are described by non-parametric Gaussian process (GP) models. GPs are gaining increasing importance in signal processing, machine learning, robotics, and control for representing unknown system functions by posterior probability distributions. This modern way of system identification is more robust than finding point estimates of a parametric function representation. Our principled filtering/smoothing approach for GP dynamic systems is based on analytic moment matching in the context of the forward-backward algorithm. Our numerical evaluations demonstrate the robustness of the proposed approach in situations where other state-of-the-art Gaussian filters and smoothers can fail. © 2011 IEEE.
Resumo:
Vision based tracking can provide the spatial location of project related entities such as equipment, workers, and materials in a large-scale congested construction site. It tracks entities in a video stream by inferring their motion. To initiate the process, it is required to determine the pixel areas of the entities to be tracked in the following consecutive video frames. For the purpose of fully automating the process, this paper presents an automated way of initializing trackers using Semantic Texton Forests (STFs) method. STFs method performs simultaneously the segmentation of the image and the classification of the segments based on the low-level semantic information and the context information. In this paper, STFs method is tested in the case of wheel loaders recognition. In the experiments, wheel loaders are further divided into several parts such as wheels and body parts to help learn the context information. The results show 79% accuracy of recognizing the pixel areas of the wheel loader. These results signify that STFs method has the potential to automate the initialization process of vision based tracking.
Resumo:
The interplay between robotics and neuromechanics facilitates discoveries in both fields: nature provides roboticists with design ideas, while robotics research elucidates critical features that confer performance advantages to biological systems. Here, we explore a system particularly well suited to exploit the synergies between biology and robotics: high-speed antenna-based wall following of the American cockroach (Periplaneta americana). Our approach integrates mathematical and hardware modeling with behavioral and neurophysiological experiments. Specifically, we corroborate a prediction from a previously reported wall-following template - the simplest model that captures a behavior - that a cockroach antenna-based controller requires the rate of approach to a wall in addition to distance, e.g., in the form of a proportional-derivative (PD) controller. Neurophysiological experiments reveal that important features of the wall-following controller emerge at the earliest stages of sensory processing, namely in the antennal nerve. Furthermore, we embed the template in a robotic platform outfitted with a bio-inspired antenna. Using this system, we successfully test specific PD gains (up to a scale) fitted to the cockroach behavioral data in a "real-world" setting, lending further credence to the surprisingly simple notion that a cockroach might implement a PD controller for wall following. Finally, we embed the template in a simulated lateral-leg-spring (LLS) model using the center of pressure as the control input. Importantly, the same PD gains fitted to cockroach behavior also stabilize wall following for the LLS model. © 2008 IEEE.
Resumo:
The paper considers the feedback stabilization of periodic orbits in a planar juggler. The juggler is "blind," i.e, he has no other sensing capabilities than the detection of impact times. The robustness analysis of the proposed control suggests that the arms acceleration at impact is a crucial design parameter even though it plays no role in the stability analysis. Analytical results and convergence proofs are provided for a simplified model of the juggler. The control law is then adapted to a more accurate model and validated in an experimental setup. © 2007 IEEE.
Resumo:
The paper studies the properties of a sinusoidally vibrating wedge billiard as a model for 2-D bounce juggling. It is shown that some periodic orbits that are unstable in the elastic fixed wedge become exponentially stable in the nonelastic vibrating wedge. These orbits are linked with certain classical juggling patterns, providing an interesting benchmark for the study of the frequency-locking properties in human rhythmic tasks. Experimental results on sensorless stabilization of juggling patterns are described. © 2006 IEEE.
Resumo:
This paper introduces a stabilization problem for an elementary impact control system in the plane. The rich dynamical properties of the wedge billiard, combined to the relevance of the associated stabilization problem for feedback control issues in legged robotics make it a valuable benchmark for energy-based stabilization of impact control systems.
Resumo:
Compliant pneumatic actuators have attracted the interests of the robotics community especially for applications where large strokes are needed in delicate environments. This paper introduces a new type of compliant actuator that generates a large twisting deformation upon pressurization. This deformation is similar to torsion in solid mechanics, and can be characterized by a twisting angle along the longitudinal axis of the actuator. To produce prototype actuators, a new fabrication process is developed that uses soft lithography. With this process, prototype actuators with a width of 7mm and a thickness of 0.65mm have been produced that exhibit a twisting rotation of 6.5 degrees per millimeter length at a pressure of 178kPa. Besides design, fabrication and characterization, this paper will go into detail on stroke optimization. © 2013 IEEE.
Resumo:
© 2014 by ASME. Two types of foldable rings are designed using polynomial continuation. The first type of ring, when deployed, forms regular polygons with an even number of sides and is designed by specifying a sequence of orientations which each bar must attain at various stages throughout deployment. A design criterion is that these foldable rings must fold with all bars parallel in the stowed position. At first, all three Euler angles are used to specify bar orientations, but elimination is also used to reduce the number of specified Euler angles to two, allowing greater freedom in the design process. The second type of ring, when deployed, forms doubly plane-symmetric (irregular) polygons. The doubly symmetric rings are designed using polynomial continuation, but in this example a series of bar end locations (in the stowed position) is used as the design criterion with focus restricted to those rings possessing eight bars.
Resumo:
Conventional models of bipedal walking generally assume rigid body structures, while elastic material properties seem to play an essential role in nature. On the basis of a novel theoretical model of bipedal walking, this paper investigates a model of biped robot which makes use of minimum control and elastic passive joints inspired from the structures of biological systems. The model is evaluated in simulation and a physical robotic platform by analyzing the kinematics and ground reaction force. The experimental results show that, with a proper leg design of passive dynamics and elasticity, an attractor state of human-like walking gait patterns can be achieved through extremely simple control without sensory feedback. The detailed analysis also explains how the dynamic human-like gait can contribute to adaptive biped walking. © 2007 Elsevier B.V. All rights reserved.
Resumo:
Traditionally, in cognitive science the emphasis is on studying cognition from a computational point of view. Studies in biologically inspired robotics and embodied intelligence, however, provide strong evidence that cognition cannot be analyzed and understood by looking at computational processes alone, but that physical system-environment interaction needs to be taken into account. In this opinion article, we review recent progress in cognitive developmental science and robotics, and expand the notion of embodiment to include soft materials and body morphology in the big picture. We argue that we need to build our understanding of cognition from the bottom up; that is, all the way from how our body is physically constructed.
Resumo:
BACKGROUND: Despite the widespread use of sensors in engineering systems like robots and automation systems, the common paradigm is to have fixed sensor morphology tailored to fulfill a specific application. On the other hand, robotic systems are expected to operate in ever more uncertain environments. In order to cope with the challenge, it is worthy of note that biological systems show the importance of suitable sensor morphology and active sensing capability to handle different kinds of sensing tasks with particular requirements. METHODOLOGY: This paper presents a robotics active sensing system which is able to adjust its sensor morphology in situ in order to sense different physical quantities with desirable sensing characteristics. The approach taken is to use thermoplastic adhesive material, i.e. Hot Melt Adhesive (HMA). It will be shown that the thermoplastic and thermoadhesive nature of HMA enables the system to repeatedly fabricate, attach and detach mechanical structures with a variety of shape and size to the robot end effector for sensing purposes. Via active sensing capability, the robotic system utilizes the structure to physically probe an unknown target object with suitable motion and transduce the arising physical stimuli into information usable by a camera as its only built-in sensor. CONCLUSIONS/SIGNIFICANCE: The efficacy of the proposed system is verified based on two results. Firstly, it is confirmed that suitable sensor morphology and active sensing capability enables the system to sense different physical quantities, i.e. softness and temperature, with desirable sensing characteristics. Secondly, given tasks of discriminating two visually indistinguishable objects with respect to softness and temperature, it is confirmed that the proposed robotic system is able to autonomously accomplish them. The way the results motivate new research directions which focus on in situ adjustment of sensor morphology will also be discussed.