61 resultados para rhétorique constitutive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Some amount of differential settlement occurs even in the most uniform soil deposit, but it is extremely difficult to estimate because of the natural heterogeneity of the soil. The compression response of the soil and its variability must be characterised in order to estimate the probability of the differential settlement exceeding a certain threshold value. The work presented in this paper introduces a probabilistic framework to address this issue in a rigorous manner, while preserving the format of a typical geotechnical settlement analysis. In order to avoid dealing with different approaches for each category of soil, a simplified unified compression model is used to characterise the nonlinear compression behavior of soils of varying gradation through a single constitutive law. The Bayesian updating rule is used to incorporate information from three different laboratory datasets in the computation of the statistics (estimates of the means and covariance matrix) of the compression model parameters, as well as of the uncertainty inherent in the model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Over the last 50 years, the city of Venice, Italy, has observed a significant increase in the frequency of flooding. Numerous engineering solutions have been proposed, including the use of movable gates located at the three lagoon inlets. A key element in the prediction of performance is the estimation of settlements of the foundation system of the gates. The soils of Venice Lagoon are characterized by very erratic depositional patterns of clayey silts, resulting in an extremely heterogeneous stratigraphy with discontinuous layering. The soils are also characterized by varying contents of coarse and fine-grained particles. In contrast, the mineralogical composition of these deposits is quite uniform, which allows us to separate the influence of mineralogy from that of grain size distribution. A comprehensive geotechnical testing program was performed to assess the one-dimensional compression of Venice soils and examine the factors affecting the response in the transition from one material type to another. The compressibility of these natural silty clayey soils can be described by a single set of constitutive laws incorporating the relative fraction of granular to cohesive material. © 2007 ASCE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The response of submerged slopes on the continental shelf to seismic or storm loading has become an important element in the risk assessment for offshore structures and "local" tsunami hazards worldwide. The geological profile of these slopes typically includes normally consolidated to lightly overconsolidated soft cohesive soils with layer thickness ranging from a few meters to hundreds of meters. The factor of safety obtained from pseudo-static analyses is not always a useful measure for evaluating the slope response, since values less than one do not necessarily imply slope failure with large movements of the soil mass. This paper addresses the relative importance of different factors affecting the response of submerged slopes during seismic loading. The analyses use a dynamic finite element code which includes a constitutive law describing the anisotropic stress-strain-strength behavior of normally consolidated to lightly overconsolidated clays. The model also incorporates anisotropic hardening to describe the effect of different shear strain and stress histories as well as bounding surface principles to provide realistic descriptions of the accumulation of the plastic strains and excess pore pressure during successive loading cycles. The paper presents results from parametric site response analyses on slope geometry and layering, soil material parameters, and input ground motion characteristics. The predicted maximum shear strains, permanent deformations, displacement time histories and maximum excess pore pressure development provide insight of slope performance during a seismic event. © 2006 Author(s). This work is licensed under a Creative Commons License.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Assessment of seismic performance and estimation of permanent displacements for submerged slopes require the accurate description of the soil's stress-strain-strength relationship under irregular cyclic loading. The geological profile of submerged slopes on the continental shelf typically consists of normally to lightly overconsolidated clays with depths ranging from a few meters to a few hundred meters and very low slope angles. This paper describes the formulation of a simplified effective-stress-based model, which is able to capture the key aspects of the cyclic behavior of normally consolidated clays. The proposed constitutive law incorporates anisotropic hardening and bounding surface principles to allow the user to simulate different shear strain and stress reversal histories as well as provide realistic descriptions of the accumulation of plastic shear strains and excess pore pressure during successive loading cycles. (C) 2000 Published by Elsevier Science Ltd. | Assessment of seismic performance and estimation of permanent displacements for submerged slopes require the accurate description of the soil's stress-strain-strength relationship under irregular cyclic loading. The geological profile of submerged slopes on the continental shelf typically consists of normally to lightly overconsolidated clays with depths ranging from a few meters to a few hundred meters and very low slope angles. This paper describes the formulation of a simplified effective-stress-based model, which is able to capture the key aspects of the cyclic behavior of normally consolidated clays. The proposed constitutive law incorporates anisotropic hardening and bounding surface principles to allow the user to simulate different shear strain and stress reversal histories as well as provide realistic descriptions of the accumulation of plastic shear strains and excess pore pressures during successive loading cycles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An analysis is presented of a database of 67 tests on 21 clays and silts of undrained shear stress-strain data of fine-grained soils. Normalizations of secant G in terms of initial mean effective stress p9 (i.e., G=p9 versus log g) or undrained shear strength cu (i.e., G=cu versus log g) are shown to be much less successful in reducing the scatter between different clays than the approach that uses the maximum shear modulus,Gmax, a technique still not universally adopted by geotechnical researchers and constitutive modelers. Analysis of semiempirical expressions forGmax is presented and a simple expression that uses only a void-ratio function and a confining-stress function is proposed. This is shown to be superior to a Hardin-style equation, and the void ratio function is demonstrated as an alternative to an overconsolidation ratio (OCR) function. To derive correlations that offer reliable estimates of secant stiffness at any required magnitude of working strain, secant shear modulus G is normalized with respect to its small-strain value Gmax, and shear strain g is normalized with respect to a reference strain gref at which this stiffness has halved. The data are corrected to two standard strain rates to reduce the discrepancy between data obtained from static and cyclic testing. The reference strain gref is approximated as a function of the plasticity index.Aunique normalized shear modulus reduction curve in the shape of a modified hyperbola is fitted to all the available data up to shear strains of the order of 1%. As a result, good estimates can be made of the modulus reduction G/Gmax ±30% across all strain levels in approximately 90% of the cases studied. New design charts are proposed to update the commonly used design curves. © 2013 American Society of Civil Engineers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ure2p is the protein determinant of the Saccharomyces cerevisiae prion state [URE3]. Constitutive overexpression of the HSP70 family member SSA1 cures cells of [URE3]. Here, we show that Ssa1p increases the lag time of Ure2p fibril formation in vitro in the presence or absence of nucleotide. The presence of the HSP40 co-chaperone Ydj1p has an additive effect on the inhibition of Ure2p fibril formation, whereas the Ydj1p H34Q mutant shows reduced inhibition alone and in combination with Ssa1p. In order to investigate the structural basis of these effects, we constructed and tested an Ssa1p mutant lacking the ATPase domain, as well as a series of C-terminal truncation mutants. The results indicate that Ssa1p can bind to Ure2p and delay fibril formation even in the absence of the ATPase domain, but interaction of Ure2p with the substrate-binding domain is strongly influenced by the C-terminal lid region. Dynamic light scattering, quartz crystal microbalance assays, pull-down assays and kinetic analysis indicate that Ssa1p interacts with both native Ure2p and fibril seeds, and reduces the rate of Ure2p fibril elongation in a concentration-dependent manner. These results provide new insights into the structural and mechanistic basis for inhibition of Ure2p fibril formation by Ssa1p and Ydj1p.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fundamental contact mechanics principles underlying nanoindentation testing techniques are reviewed. A range of material constitutive responses are covered, including elastic, plastic, and viscous deformation, and incorporating indentation of linearly viscoelastic materials and poroelastic materials. Emphasis is on routine analysis of experimental nanoindentation data, including deconvolution techniques for material properties measurements during indentation. In most cases, an analytical approach for an isotropic half-space is considered. Special cases are briefly described, including anisotropic materials, inhomogeneous composite materials and layered filmsubstrate systems. © 2011 by Pan Stanford Publishing Pte. Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A small strain two-dimensional discrete dislocation plasticity framework coupled to vacancy diffusion is developed wherein the motion of edge dislocations is by a combination of glide and climb. The dislocations are modelled as line defects in a linear elastic medium and the mechanical boundary value problem is solved by the superposition of the infinite medium elastic fields of the dislocations and a complimentary non-singular solution that enforces the boundary conditions. Similarly, the climbing dislocations are modelled as line sources/sinks of vacancies and the vacancy diffusion boundary value problem is also solved by a superposition of the fields of the line sources/sinks in an infinite medium and a complementary non-singular solution that enforces the boundary conditions. The vacancy concentration field along with the stress field provides the climb rate of the dislocations. Other short-range interactions of the dislocations are incorporated via a set of constitutive rules. We first employ this formulation to investigate the climb of a single edge dislocation in an infinite medium and illustrate the existence of diffusion-limited and sink-limited climb regimes. Next, results are presented for the pure bending and uniaxial tension of single crystals oriented for single slip. These calculations show that plasticity size effects are reduced when dislocation climb is permitted. Finally, we contrast predictions of this coupled framework with an ad hoc model in which dislocation climb is modelled by a drag-type relation based on a quasi steady-state solution. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interactions between dislocations and grain boundaries play an important role in the plastic deformation of polycrystalline metals. Capturing accurately the behaviour of these internal interfaces is particularly important for applications where the relative grain boundary fraction is significant, such as ultra fine-grained metals, thin films and microdevices. Incorporating these micro-scale interactions (which are sensitive to a number of dislocation, interface and crystallographic parameters) within a macro-scale crystal plasticity model poses a challenge. The innovative features in the present paper include (i) the formulation of a thermodynamically consistent grain boundary interface model within a microstructurally motivated strain gradient crystal plasticity framework, (ii) the presence of intra-grain slip system coupling through a microstructurally derived internal stress, (iii) the incorporation of inter-grain slip system coupling via an interface energy accounting for both the magnitude and direction of contributions to the residual defect from all slip systems in the two neighbouring grains, and (iv) the numerical implementation of the grain boundary model to directly investigate the influence of the interface constitutive parameters on plastic deformation. The model problem of a bicrystal deforming in plane strain is analysed. The influence of dissipative and energetic interface hardening, grain misorientation, asymmetry in the grain orientations and the grain size are systematically investigated. In each case, the crystal response is compared with reference calculations with grain boundaries that are either 'microhard' (impenetrable to dislocations) or 'microfree' (an infinite dislocation sink). © 2013 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hot-pressed laminates with a [0/90]48 lay-up, consisting of 83% by volume of ultra high molecular-weight polyethylene (UHMWPE) fibres, and 17% by volume of polyurethane (PU) matrix, were cut into cantilever beams and subjected to transverse end-loading. The collapse mechanisms were observed both visually and by X-ray scans. Short beams deform elastically and collapse plastically in longitudinal shear, with a shear strength comparable to that observed in double notch, interlaminar shear tests. In contrast, long cantilever beams deform in bending and collapse via a plastic hinge at the built-in end of the beam. The plastic hinge is formed by two wedge-shaped microbuckle zones that grow in size and in intensity with increasing hinge rotation. This new mode of microbuckling under macroscopic bending involves both elastic bending and shearing of the plies, and plastic shear of the interface between each ply. The double-wedge pattern contrasts with the more usual parallel-sided plastic microbuckle that occurs in uniaxial compression. Finite element simulations and analytical models give additional insight into the dominant material and geometric parameters that dictate the collapse response of the UHMWPE composite beam in bending. Detailed comparisons between the observed and predicted collapse responses are used in order to construct a constitutive model for laminated UHMWPE composites. © 2013 Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interest in hydrogel materials is growing rapidly, due to the potential for hydrogel use in tissue engineering and drug delivery applications, and as coatings on medical devices. However, a key limitation with the use of hydrogel materials in many applications is their relatively poor mechanical properties compared with those of (less biocompatible) solid polymers. In this review, basic chemistry, microstructure and processing routes for common natural and synthetic hydrogel materials are explored first. Underlying structure-properties relationships for hydrogels are considered. A series of mechanical testing modalities suitable for hydrogel characterisation are next considered, including emerging test modalities, such as nanoindentation and atomic force microscopy (AFM) indentation. As the data analysis depends in part on the material's constitutive behaviour, a series of increasingly complex constitutive models will be examined, including elastic, viscoelastic and theories that explicitly treat the multiphasic poroelastic nature of hydrogel materials. Results from the existing literature on agar and polyacrylamide mechanical properties are compiled and compared, highlighting the challenges and uncertainties inherent in the process of gel mechanical characterisation. © 2014 Institute of Materials, Minerals and Mining and ASM International.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A generalized theory for the viscoelastic behavior of idealized bituminous mixtures (asphalts) is presented. The mathematical model incorporates strain rate and temperature dependency as well as nonmonotonic loading and unloading with shape recovery. The stiffening effect of the aggregate is included. The model is of phenomenological nature. It can be calibrated using a relatively limited set of experimental parameters, obtainable by uniaxial tests. It is shown that the mathematical model can be represented as a special nonlinear form of the Burgers model. This facilitates the derivation of numerical algorithms for solving the constitutive equations. A numerical scheme is implemented in a user material subroutine (UMAT) in the finite-element analysis (FEA) code ABAQUS. Simulation results are compared with uniaxial and indentation tests on an idealized asphalt mix. © 2014 American Society of Civil Engineers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new constitutive model called Methane Hydrate Critical State (MHCS) model was conducted to investigate the geomechanical response of the gas-hydrate-bearing sediments at the Nankai Trough during the wellbore construction process. The strength and dilatancy of gas-hydrate-bearing soil would gradually disappear when the bonds are destroyed because of excessively shearing, which are often observed in dense soils and also in bonded soils such as cemented soil and unsaturated soil. In this study, the MHCS model, which presents such softening features, would be incorporated into a staged-finite-element model in ABAQUS, which mainly considered the loading history of soils and the interaction between cement-casing-formation. This model shows the influence of gas-hydrate-bearing soil to the deformation and stability of a wellbore and the surrounding sediments during wellbore construction. At the same time, the conventional Mohr-Coulomb model was used in the model to show the advantages of MHCS model by comparing the results of the two models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tunnelling in urban areas continues to increase and has highlighted the need for a better understanding of the impact of tunnel excavations on existing buildings. This paper considers the influence of surface structures on ground displacements caused by tunnelling in sand through finite element modelling and centrifuge testing. First, the importance of modelling assumptions is evaluated by comparing centrifuge modelling results to finite element modelling results for various soil constitutive models: both a Young's modulus that linearly increases with depth and a power law relation between the soil stiffness and stresses are considered. Second, the most effective soil constitutive model was used to perform a sensitivity study on the effect of different factors governing the structural response. In particular, the effect of the building stiffness and weight on the modification of soil displacements is investigated by introducing a simple surface structure. The use of a no-tension interface between the building and the soil was found to be essential to investigate the effect of weight on gap formation between the soil and the structure, as observed during the experimental tests. Results show the importance of considering the relation between the building weight and the relative stiffness between the building and the soil when assessing the structural response. © 2014 Korean Geotechnical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Predicting damage to masonry structures due to tunnelling-induced ground movements remains a challenge for practising design engineers. Useful simplified procedures exist, but more detailed analysis has the potential to improve these procedures. This paper considers the use of finite element modelling, including non-linear constitutive laws for the soil and the structure, to simulate damage to a simple masonry structure subjected to tunnelling in sand. The numerical model is validated through comparison with the results of a series of centrifuge tests and used to perform a sensitivity study on the effect of building weight and masonry damage on the structural response. Results show a direct correlation between the weight of the structure, normalised to the relative stiffness between the structure and the soil, and the modification of the settlement profile. By including a cracking model for the masonry, the reduction in structural stiffness caused by progressive masonry damage is also proven to affect the building deflection.