51 resultados para reactivity


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The feasibility of a conventional PWR fuel cycle with complete recycling of TRU elements in the same reactor is investigated. A new Combined Non-fertile and Uranium (CONFU) fuel assembly where about 20% of the uranium fuel pins are replaced with fertile free fuel (FFF) hosting TRU generated in the previous cycle is proposed. In this sustainable fuel cycle based on the CONFU fuel assembly concept, the amount and radiotoxicity of the nuclear waste can be significantly reduced in comparison with the conventional once-through UO 2 fuel cycle. It is shown that under the constraints of acceptable power peaking limits, the CONFU assembly exhibits negative reactivity feedback coefficients comparable in values to those of the reference UO2 fuel. Moreover, the effective delayed neutron fraction is about the same as for UO2-fueled cores. Therefore, feasibility of the PWR core operation and control with complete TRU recycle has been shown in principle. However, gradual build up of small amounts of Cm and Cf challenges fuel reprocessing and fabrication due to the high spontaneous fissions rates of these nuclides and heat generation by some Pu, Am, and Cm isotopes. Feasibility of the processing steps becomes more attainable if the time between discharge and reprocessing is 20 years or longer. The implications for the entire fuel cycle will have to be addressed in future studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The synthesis of magnesium silicate hydrate (MSH), which has wide applications in both construction and environmental fields, has been studied for decades. However, it is known that the characteristics of magnesia (MgO) vary significantly depending on their calcination conditions, which is expected to affect their performance in the MgO-SiO2-H2O system. This paper investigated the effect of different MgO and silica sources on the formation of magnesium silicate hydrate (MSH) at room temperature. The hydration process was studied by mixing commercial reactive MgO and silica powders with water and curing for 1, 7 and 28 days. The hydration products were analysed with the help of X-ray diffraction (XRD) and thermogravimatric analysis (TGA). The results showed the continuous consumption of MgO and the existence of MSH and brucite and other minor phases such as magnesite and calcite. It is found that the Mg and Si sources have significant effect on the hydration process of MgO-SiO2-H2O system. The reaction degree is controlled by the availability of dissolved Mg and Si in the solution. The former is determined by the reactivity of MgO and the latter is related to the reactivity of the silica as well as the pH of the system. © 2013 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conventional alkali-activated slag (AAS) cements suffer from significant drying shrinkage which hinders their widespread application. This paper investigates the potential of using commercial reactive MgO to reduce the drying shrinkage of AAS. Two different reactive MgOs were added at a content of 2.5-7.5 wt% of the slag, which was activated by sodium hydroxide and water-glass. The strength and the drying shrinkage of those reactive MgO modified AAS (MAAS) pastes were measured up to 90 days. It is found that MgO with high reactivity accelerated the early hydration of AAS, while MgO with medium reactivity had little effect. The drying shrinkage was significantly reduced by highly reactive MgO but it also generated severe cracking under the dry condition. On the other hand, medium-reactive MgO only showed observable shrinkage-reducing effect after one month, but the cement soundness was improved. The hydration products, analysed by X-ray diffraction, thermogravimetric analysis and scanning electron microscopy techniques, showed that Mg was mainly incorporated in the hydrotalcite-like phases. It is concluded that the curing conditions and the time of hydrotalcite-like phases formation and their quantity are crucial to the developed strength and shrinkage reduction properties of MAAS, which are highly dependent on the reactivity and content of reactive MgO. Crown Copyright © 2013 Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reactive magnesia (MgO) has emerged as an essential component in a new family of cements with significantly superior technical and environmental performance over Portland cement. The physical characteristics of different reactive magnesia, which are likely to affect their engineering performance, vary considerably depending on their origin and manufacturing processes. To appropriately utilise such a material, it is essential to develop a better understanding of the characteristics of different magnesia from various sources. In this study, the detailed characterisation of 14 commercial magnesia in terms of reactivity, textural properties, X-ray diffraction pattern, pH value and hydration behaviour and morphology is presented and correlation between them is developed. Relationships were developed between the reactivity, specific surface area, agglomeration ratio and hydration rate based on the experimental observations. As a result, the reactive magnesia used in this study were grouped into three categories and their characteristics and anticipated performances in different applications were discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AIMS: Our aim was to determine whether alterations in biomechanical properties of human diseased compared to normal coronary artery contribute to changes in artery responsiveness to endothelin-1 in atherosclerosis. MAIN METHODS: Concentration-response curves were constructed to endothelin-1 in normal and diseased coronary artery. The passive mechanical properties of arteries were determined using tensile ring tests from which finite element models of passive mechanical properties of both groups were created. Finite element modelling of artery endothelin-1 responses was then performed. KEY FINDINGS: Maximum responses to endothelin-1 were significantly attenuated in diseased (27±3 mN, n=55) compared to normal (38±2 mN, n=68) artery, although this remained over 70% of control. There was no difference in potency (pD2 control=8.03±0.06; pD2 diseased=7.98±0.06). Finite element modelling of tensile ring tests resulted in hyperelastic shear modulus μ=2004±410 Pa and hardening exponent α=22.8±2.2 for normal wall and μ=2464±1075 Pa and α=38.3±6.7 for plaque tissue and distensibility of diseased vessels was decreased. Finite element modelling of active properties of both groups resulted in higher muscle contractile strain (represented by thermal reactivity) of the atherosclerotic artery model than the normal artery model. The models suggest that a change in muscle response to endothelin-1 occurs in atherosclerotic artery to increase its distensibility towards that seen in normal artery. SIGNIFICANCE: Our data suggest that an adaptation occurs in medial smooth muscle of atherosclerotic coronary artery to maintain distensibility of the vessel wall in the presence of endothelin-1. This may contribute to the vasospastic effect of locally increased endothelin-1 production that is reported in this condition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The reaction between MgO and microsilica has been studied by many researchers, who confirmed the formation of magnesium silicate hydrate. The blend was reported to have the potential as a novel material for construction and environment purposes. However, the characteristics of MgO vary significantly, e.g., reactivity and purity, which would have an effect on the hydration process of MgO-silica blend. This paper investigated the strength and hydration products of reactive MgO and silica blend at room temperature up to 90 days. The existence of magnesium silicate hydrate after 7 days' curing was confirmed with the help of infrared spectroscopy, thermogravimetric analysis and X-ray diffraction. The microstructural and elemental analysis of the resulting magnesium silicate hydrate was conducted using scanning electron microscopy and energy dispersive spectroscopy. In addition, the effect of characteristics of MgO on the hydration process was discussed. It was found that the synthesis of magnesium silicate hydrate was highly dependent on the reactivity of the precursors. MgO and silica with higher reactivity resulted in higher formation rate of magnesium silicate hydrate. In addition, the impurity in the MgO affects the pH value of the blends, which in turn determines the solubility of silica and the formation of magnesium silicate hydrate. © 2014 Elsevier Ltd. All rights reserved.