105 resultados para quasiparticle alignment


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dense arrays of high aspect ratio Si micro-pyramids have been formed by cumulative high intensity laser irradiation of doped Si wafers in an SF6 environment. A comparative study using nanosecond (XeCl, 308 nm) and femtosecond (Ti: Sapphire, 800 nm and KrF, 248 nm) laser pulses has been performed in this work. The influence of pulse duration and ambient gas pressure (SF6) is also presented. Scanning electron microscopy has shown that upon laser irradiation conical features appear on the Si surface in a rather homogenous distribution and with a spontaneous self alignment into arrays. Their lowest tip diameter is 800 nm; while their height reaches up to 90 mum. Secondary tip decoration appears on the surface of the formed spikes. Areas of 2 X 2 mm(2) covered with Si cones have been tested as cold cathode field emitters. After several conditioning cycles, the field emission threshold for the studied Si tips is as low as 2 V/mum, with an emission current of 10(-3) A/cm(2) at 4 V/mum. Even though these structures have smaller aspect ratios than good quality carbon nanotubes, their field emission properties are similar. The simple and direct formation of field emission Si arrays over small pre-selected areas by laser irradiation could lead to a novel approach for the development of electron sources. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this letter, the uniform lying helix (ULH) liquid crystal texture, required for the flexoelectro-optic effect, is polymer stabilized by the addition of a small percentage of reactive mesogen to a high-tilt-angle (φ>60°) bimesogenic chiral nematic host. The electro-optic response is measured for a range of reactive mesogen concentration mixtures, and compared to the large-tilt-angle switch of the pure chiral nematic mixture. The optimum concentration of reactive mesogen, which is found to provide ample stabilization of the texture with minimal impact on the electro-optic response, is found to be approximately 3%. Our results indicate that polymer stabilization of the ULH texture using a very low concentration of reactive mesogen is a reliable way of ruggedizing flexoelectro-optic devices without interfering significantly with the electro-optics of the effect, negating the need for complicated surface alignment patterns or surface-only polymerization. The polymer stabilization is shown to reduce the temperature dependence of the flexoelectro-optic response due to "pinning" of the chiral nematic helical pitch. This is a restriction of the characteristic thermochromic behavior of the chiral nematic. Furthermore, selection of the temperature at which the sample is ultraviolet cured allows the tilt angle to be optimized for the entire chiral nematic temperature range. The response time, however, remains more sensitive to operating temperature than curing temperature. This allows the sample to be cured at low temperature and operated at high temperature, providing simultaneous optimization of these two previously antagonistic performance aspects. © 2006 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present the fabrication and high frequency characterization of a capacitive nanoelectromechanical system (NEMS) switch using a dense array of horizontally aligned single-wall carbon nanotubes (CNTs). The nanotubes are directly grown onto metal layers with prepatterned catalysts with horizontal alignment in the gas flow direction. Subsequent wetting-induced compaction by isopropanol increases the nanotube density by one order of magnitude. The actuation voltage of 6 V is low for a NEMS device, and corresponds to CNT arrays with an equivalent Young's modulus of 4.5-8.5 GPa, and resistivity of under 0.0077 Ω·cm. The high frequency characterization shows an isolation of -10 dB at 5 GHz. © 2010 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We review the current state of the polymer-carbon nanotube composites field. The article first covers key points in dispersion and stabilization of nanotubes in a polymer matrix, with particular attention paid to ultrasonic cavitation and shear mixing. We then focus on the emerging trends in nanocomposite actuators, in particular, photo-stimulated mechanical response. The magnitude and even the direction of this actuation critically depend on the degree of tube alignment in the matrix; in this context, we discuss the affine model predicting the upper bound of orientational order of nanotubes, induced by an imposed strain. We review how photo-actuation in nanocomposites depend on nanotube concentration, alignment and entanglement, and examine possible mechanisms that could lead to this effect. Finally, we discuss properties of pure carbon nanotube networks, in form of mats or fibers. These systems have no polymer matrix, yet demonstrate pronounced viscoelasticity and also the same photomechanical actuation as seen in polymer-based composites. © 2008 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Characterization of polymer nanocomposites by electron microscopy has been attempted since last decade. Main drives for this effort were analysis of dispersion and alignment of fillers in the matrix. Sample preparation, imaging modes and irradiation conditions became particularly challenging due to the small dimension of the fillers and also to the mechanical and conductive differences between filler and matrix. To date, no standardized dispersion and alignment process or characterization procedures exist in the trade. Review of current state of the art on characterization of polymer nanocomposites suggests that the most innovative electron and ion beam microscopy has not yet been deployed in this material system. Additionally, recently discovered functionalities of these composites, such as electro and photoactuation are amenable to the investigation of the atomistic phenomena by in situ transmission electron microscopy. The possibility of using innovative thinning techniques is presented. © 2010 Copyright SPIE - The International Society for Optical Engineering.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have fabricated a series of polymer stabilized chiral nematic test cells for use as flexoelectro-optic devices. The devices fabricated were based on commercial chiral nematic mixtures which were polymer stabilized so as to enhance the uniformity and stability of the uniform lying helix texture in the cells. During fabrication and test procedures a series of unusual scattering states have been observed within the devices at different viewing angles. The observations made so far indicate that the properties of the scattering state lies somewhere between the focal conic texture and the Grandjean or planar texture and that the devices exhibit both a helical pitch selective reflection and scattering effect. What is even more dramatic is that the wavelength selectivity of the scattering effect can be tuned by an applied field. In addition, we show that it is possible to achieve good uniform lying helix textures from such devices. Moreover, we show that in certain cases the spontaneous alignment of the helix in the plane of the device opens up the possibility of a new mode of switching. Flexoelectric, Redshift, Coloured scattering, Liquid crystal, Polymer-stabilized liquid-crystal;.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We demonstrate the production of integrated-gate nanocathodes which have a single carbon nanotube or silicon nanowire/whisker per gate aperture. The fabrication is based on a technologically scalable, self-alignment process in which a single lithographic step is used to define the gate, insulator, and emitter. The nanotube-based gated nanocathode array has a low turn-on voltage of 25 V and a peak current of 5 μA at 46 V, with a gate current of 10 nA (i.e., 99% transparency). These low operating voltage cathodes are potentially useful as electron sources for field emission displays or miniaturizing electron-based instrumentation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thin films of inorganic materials are used in diverse applications, typically in polycrystalline form due to their relatively simple production. We have used enhanced piezoresponse force microscopy to investigate the domain distribution within neighbouring grains in thin polycrystalline films of the ferroelectric-ferroelastic system lead zirconate titanate (PZT). We demonstrate that domains are organized into areas with a correlated alignment of the ferroelastic and ferroelectric domains, spanning multiple grain boundaries. We present five typical arrangements of such structures: azimuthal, radial, gradient, and short- and long- range linear domain organizations. Moreover, we discuss the mechanical and electrical constraints that dictate these structures. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It has been widely recognized that the combination of carbon nanotubes (CNTs) and low molar mass thermotropic liquid crystals (tLCs) not only provides a useful way to align CNTs, but also dramatically enhances the tLC performance especially in the liquid crystal display technology. Such CNT-tLC nanocomposites have ignited hopes to address many stubborn problems within the field, such as low contrast, slow response, and narrow view angle. However, this material development has been limited by the poor solubility of CNTs in tLCs. Here, we describe an effective strategy to solve the problem. Prior to integrating with tLCs, pristine CNTs are physically "coated" by a liquid crystalline polymer (LCP) which is compatible with tLCs. The homogeneous CNT-tLC composite obtained in this way is stable for over 6 months, and the concentration of CNTs in tLCs can reach 1 wt %. We further demonstrate the alignment of CNTs at high CNT concentrations by an electric field with a theory to model the impedance response of the CNT-tLC mixture.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we demonstrate photonic band-edge laser emission from emulsion-based polymer dispersed liquid crystals. The lasing medium consists of dye-doped chiral nematic droplets dispersed within a polymer matrix that spontaneously align as the film dries. Such lasers can be easily formed on single substrates with no alignment layers. The system combines the self-organizing periodic structure of chiral nematic liquid crystals with the simplicity of the emulsion procedure so as to produce a material that retains the emission characteristics of band-edge lasers yet can be readily coated. Sequential and stacked layers demonstrate the possibility of achieving simultaneous multi-wavelength laser output from glass, metallic, and flexible substrates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two tutorial examples are presented which illustrate different methods of designing practical multivariable control systems using frequency-domain techniques. In the first case eigenvector alignment techniques are used to manipulate and shape the generalized Nyquist diagrams, while in the second case LQG theory in conjunction with singular value plots is employed. In both cases the designs are carried out on a modern computer-aided control-system design package.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The growth of vertically aligned zinc oxide nanowires (ZnO NW) using a simple vapor deposition method system is reported. The growth properties are studied as a function of the Au catalyst layer thickness, pressure, deposition temperature, and oxygen ratio. It was found that the diameter and density of the nanowires is controlled mostly by the growth temperature and pressure. The alignment of the nanowires depends on a combination of three factors including the pressure, temperature and the oxygen ratio. Our results implicates the growth occurs by a vapor liquid solid (VLS) process [1].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have used novel liquid crystals with extremely large flexoelectric coefficients in a range of ultra-fast photonic/display modes, namely 1) the uniform lying helix, that leads to in-plain switching, birefringence based displays with 100 μs switching times at low fields, i.e.2-5 V/μm, wide viewing angle and analogue or grey scale capability, 2) the uniform standing helix, using planar surface alignment and in-plane fields, with sub ms response times and optical contrasts in excess of 5000:1 with a perfect black "off state", 3) the wide temperature range blue phase that leads to field controlled reflective color and 4) high slope efficiency, wide wavelength range tunable narrow linewidth microscopic liquid crystal lasers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A process to fabricate solution-processable thin-film transistors (TFTs) with a one-step self-aligned definition of the dimensions in all functional layers is demonstrated. The TFT-channel, semiconductor materials, and effective gate dimention of different layers are determined by a one-step imprint process and the subsequent pattern transfer without the need for multiple patterning and mask alignment. The process is compatible with fabrication of large-scale circuits. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To address future uncertainty within strategy and innovation, managers extrapolate past patterns and trends into the future. Several disciplines make use of lifecycles, often with a linear sequence of identified phases, to make predictions and address likely uncertainties. Often the aggregation of several cycles is then interpreted as a new cycle - such as product lifecycles into an industry lifecycle. However, frequently different lifecycle terms - technology, product, industry - are used interchangeably and without clear definition. Within the interdisciplinary context of technology management, this juxtaposition of dynamics can create confusion, rather than clarification. This paper explores some typical dynamics associated with technology-based industries, using illustrative examples from the automotive industry. A wide range of dimensions are seen to influence the path of a technology-based industry, and stakeholders need to consider the likely causality and synchronicity of these. Some curves can simply present the aggregation of components; other dynamics incur time lags, rather than being superimposed, but still have a significant impact. To optimise alignment of the important dimensions within any development, and for future strategy decisions, understanding these interactions will be critical. © 2011 IEEE.