53 resultados para quantum well intermixing


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, the static and dynamic performance of multi quantum-well (MQW) 1.3 μm InGaAsP Fabry Perot lasers is assessed experimentally and theoretically to identify the mechanisms responsible for impaired high speed performance at elevated temperature. Initially, threshold currents and spontaneous emission spectra are characterized for a range of temperatures from room temperature to 85 °C to indicate a significant increase in non-radiative current contributions. Preliminary estimates are made for the contributions of leakage and Auger recombination rates, found from the dependence of integrated spontaneous emission with carrier density. Drift-diffusion modelling is found to accurately predict the trend of threshold currents over temperature. Using gain modelling good agreement is found between the measured and predicted integrated spontaneous emission intensity. Gain measurements at 85 °C indicate a reduction in RIN frequency to 63% of the 25 °C value which matches well with experimental small signal performance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A strain-compensated multiple quantum well device is used as a DFB laser, this has been optimized for low jitter gain switched operation at 10 GHz. The signal is transmitted down 80 km of standard fiber then amplified, filtered and polarization controlled before being injected into a DFB laser. The purpose of this regeneration process is to gain switch the DFB with the extracted clock signal in order to retime the converted signal. This process also simultaneously converts the input NRZ format to an output RZ data to format and results in a signal whose optical power and extinction ratio are considerably improved by the regeneration process.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper reviews recent advances in superradiant (SR) emission in semiconductors at room temperature, a process which has been shown to enable the generation on demand of high power picosecond or subpicosecond pulses across a range of different wavelengths. The different characteristic features of SR emission from semiconductor devices with bulk, quantum-well, and quantum-dot active regions are outlined, and particular emphasis is placed on comparing the characteristic features of SR with those of lasing. Finally, potential applications of SR pulses are discussed. © 1995-2012 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have investigated the structural properties and photoluminescence of novel axial and radial heterostructure III-V nanowires, fabricated by metalorganic chemical vapour deposition. Segments of InGaAs have been incorporated within GaAs nanowires, to create axial heterostructure nanowires which exhibit strong photoluminescence. Photoluminescence is observed from radial heterostructure nanowires (core-shell nanowires), consisting of GaAs cores with AlGaAs shells. Core-multishell nanowires, of GaAs cores clad in several alternating layers of thick AlGaAs barrier shells and thin GaAs quantum well shells, exhibit a blue-shifted photoluminescence peak arising from quantum confinement effects. © 2006 Crown Copyright.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report the first hybrid mode-locking of a monolithic two-section multiple quantum well InGaN based laser diode. This device, with a length of 1.5 mm, has a 50-μm-long absorber section located at the back facet and generates a continuous stable 28.6 GHz pulse train with an average output power of 9.4 mW at an emission wavelength of 422 nm. Under hybrid mode-locking, the pulse width reduces to 4 ps, the peak power increases to 72 mW, and the microwave linewidth reduces by 13 dB to <500 kHz. We also observe the passive mode-locking with pulse width and peak power of 8 ps and 37 mW, respectively. © 1989-2012 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The use of large size Si substrates for epitaxy of nitride light emitting diode (LED) structures has attracted great interest because Si wafers are readily available in large diameter at low cost. In addition, such wafers are compatible with existing processing lines for the 6-inch and larger wafer sizes commonly used in the electronics industry. With the development of various methods to avoid wafer cracking and reduce the defect density, the performance of GaN-based LED and electronic devices has been greatly improved. In this paper, we review our methods of growing crack-free InGaN-GaN multiple quantum well (MQW) LED structures of high crystalline quality on Si(111) substrates. The performance of processed LED devices and its dependence on the threading dislocation density were studied. Full wafer-level LED processing using a conventional 6-inch III-V processing line is also presented, demonstrating the great advantage of using large-size Si substrates for mass production of GaN LED devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Resonant tunnelling spectroscopy is used to investigate the energy level spectrum of a wide potential well in the presence of a large magnetic field oriented at angles θ between 0° and 90° to the normal to the plane of the well. In the tilted field geometry, the current-voltage characteristics exhibit a large number of quasiperiodic resonant peaks even though the classical motion of electrons in the potential well is chaotic. The voltage range and spacing of the resonances both change dramatically with θ. We give a quantitative explanation for this behaviour by considering the classical period of unstable periodic orbits within the chaotic sea of the potential well.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Simulation of materials at the atomistic level is an important tool in studying microscopic structure and processes. The atomic interactions necessary for the simulation are correctly described by Quantum Mechanics. However, the computational resources required to solve the quantum mechanical equations limits the use of Quantum Mechanics at most to a few hundreds of atoms and only to a small fraction of the available configurational space. This thesis presents the results of my research on the development of a new interatomic potential generation scheme, which we refer to as Gaussian Approximation Potentials. In our framework, the quantum mechanical potential energy surface is interpolated between a set of predetermined values at different points in atomic configurational space by a non-linear, non-parametric regression method, the Gaussian Process. To perform the fitting, we represent the atomic environments by the bispectrum, which is invariant to permutations of the atoms in the neighbourhood and to global rotations. The result is a general scheme, that allows one to generate interatomic potentials based on arbitrary quantum mechanical data. We built a series of Gaussian Approximation Potentials using data obtained from Density Functional Theory and tested the capabilities of the method. We showed that our models reproduce the quantum mechanical potential energy surface remarkably well for the group IV semiconductors, iron and gallium nitride. Our potentials, while maintaining quantum mechanical accuracy, are several orders of magnitude faster than Quantum Mechanical methods.