51 resultados para prevention and control


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Impedance control can be used to stabilize the limb against both instability and unpredictable perturbations. Limb posture influences motor noise, energy usage and limb impedance as well as their interaction. Here we examine whether subjects use limb posture as part of a mechanism to regulate limb stability. Subjects performed stabilization tasks while attached to a two dimensional robotic manipulandum which generated a virtual environment. Subjects were instructed that they could perform the stabilization task anywhere in the workspace, while the chosen postures were tracked as subjects repeated the task. In order to investigate the mechanisms behind the chosen limb postures, simulations of the neuro-mechanical system were performed. The results indicate that posture selection is performed to provide energy efficiency in the presence of force variability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates the fundamental trade-offs involved in designing energy-regenerative suspensions, in particular, focusing on efficiency of power extraction and its effect on vehicle dynamics and control. It is shown that typical regenerative devices making use of linear-to-rotational elements can be modelled as a parallel arrangement of an inerter and a dissipative admittance. Taking account of typical adjustable parameters of the generator, it is shown, for a given suspension damping coefficient, that the power efficiency ratio scales with inertance. For a typical passenger vehicle, it is shown that there is a feasible compromise, namely that good efficiency is achievable with an inertance value that is not detrimental to vehicle performance. A prototype is designed and tested with a resistive termination and experimental results show good agreement between ideal and experimental admittances. The possibility to use dynamic (rather than purely resistive) loads to improve vehicle control without limiting the energy recovery is discussed. © 2013 Copyright Taylor and Francis Group, LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cell biology is characterised by low molecule numbers and coupled stochastic chemical reactions with intrinsic noise permeating and dominating the interactions between molecules. Recent work [9] has shown that in such environments there are hard limits on the accuracy with which molecular populations can be controlled and estimated. These limits are predicated on a continuous diffusion approximation of the target molecule (although the remainder of the system is non-linear and discrete). The principal result of [9] assumes that the birth rate of the signalling species is linearly dependent on the target molecule population size. In this paper, we investigate the situation when the entire system is kept discrete, and arbitrary non-linear coupling is allowed between the target molecule and downstream signalling molecules. In this case it is possible, by relying solely on the event triggered nature of control and signalling reactions, to define non-linear reaction rate modulation schemes that achieve improved performance in certain parameter regimes. These schemes would not appear to be biologically relevant, raising the question of what are an appropriate set of assumptions for obtaining biologically meaningful results. © 2013 EUCA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Robust climbing in unstructured environments has been one of the long-standing challenges in robotics research. Among others, the control of large adhesion forces is still an important problem that significantly restricts the locomotion performance of climbing robots. The main contribution of this paper is to propose a novel approach to autonomous robot climbing which makes use of hot melt adhesion (HMA). The HMA material is known as an economical solution to achieve large adhesion forces, which can be varied by controlling the material temperature. For locomotion on both inclined and vertical walls, this paper investigates the basic characteristics of HMA material, and proposes a design and control of a climbing robot that uses the HMA material for attaching and detaching its body to the environment. The robot is equipped with servomotors and thermal control units to actively vary the temperature of the material, and the coordination of these components enables the robot to walk against the gravitational forces even with a relatively large body weight. A real-world platform is used to demonstrate locomotion on a vertical wall, and the experimental result shows the feasibility and overall performances of this approach. © 2013 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper a new kind of hopping robot has been designed which uses inverse pendulum dynamics to induce bipedal hopping gaits. Its mechanical structure consists of a rigid inverted T-shape mounted on four compliant feet. An upright "T" structure is connected to this by a rotary joint. The horizontal beam of the upright "T" is connected to the vertical beam by a second rotary joint. Using this two degree of freedom mechanical structure, with simple reactive control, the robot is able to perform hopping, walking and running gaits. During walking, it is experimentally shown that the robot can move in a straight line, reverse direction and control its turning radius. The results show that such a simple but versatile robot displays stable locomotion and can be viable for practical applications on uneven terrain.