115 resultados para micro-structure optical device


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The detailed understanding of the electronic properties of carbon-based materials requires the determination of their electronic structure and more precisely the calculation of their joint density of states (JDOS) and dielectric constant. Low electron energy loss spectroscopy (EELS) provides a continuous spectrum which represents all the excitations of the electrons within the material with energies ranging between zero and about 100 eV. Therefore, EELS is potentially more powerful than conventional optical spectroscopy which has an intrinsic upper information limit of about 6 eV due to absorption of light from the optical components of the system or the ambient. However, when analysing EELS data, the extraction of the single scattered data needed for Kramers Kronig calculations is subject to the deconvolution of the zero loss peak from the raw data. This procedure is particularly critical when attempting to study the near-bandgap region of materials with a bandgap below 1.5 eV. In this paper, we have calculated the electronic properties of three widely studied carbon materials; namely amorphous carbon (a-C), tetrahedral amorphous carbon (ta-C) and C60 fullerite crystal. The JDOS curve starts from zero for energy values below the bandgap and then starts to rise with a rate depending on whether the material has a direct or an indirect bandgap. Extrapolating a fit to the data immediately above the bandgap in the stronger energy loss region was used to get an accurate value for the bandgap energy and to determine whether the bandgap is direct or indirect in character. Particular problems relating to the extraction of the single scattered data for these materials are also addressed. The ta-C and C60 fullerite materials are found to be direct bandgap-like semiconductors having a bandgaps of 2.63 and 1.59eV, respectively. On the other hand, the electronic structure of a-C was unobtainable because it had such a small bandgap that most of the information is contained in the first 1.2 eV of the spectrum, which is a region removed during the zero loss deconvolution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The optical and electronic properties of highly tetrahedral amorphous diamond-like carbon (amorphous diamond, a-D) films were investigated. The structure of the films grown on silicon and glass substrates, under similar deposition conditions using a compact filtered cathodic vacuum arc system, are compared using electron energy loss spectroscopy (EELS). Results from hydrogenation of the films are also reported. The hydrogenated films show two prominent IR absorption peaks centered at 2920 and 2840 cm-1, which are assigned to the stretch mode of the C-H bond in the sp3 configuration on the C-H3 and C-H sites respectively. The high loss EELS spectra show no reduction in the high sp3 content in the hydrogenated films. UV and visible transmission spectra of a-D thin films are also presented. The optical band gap of 2.0-2.2 eV for the a-D films is found to be consistent with the electronic bandgap. The relationship between the intrinsic compressive stress in the films and the refractive index is also presented. The space charge limited current flow is analyzed and coupled with the optical absorption data to give an estimate of 1018 cm-3 eV-1 for the valence band edge density of states.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new idea of power device, which contains highly nitrogen-doped CVD diamond and Schottky contact, is proposed to actualise a power device with diamond. Two-dimensional simulation is conducted using ISE TCAD device simulator. While comparably high current is obtained in a transient simulation as expected, this current does not contribute to the drain-source current because of the symmetry of the device. Using an asymmetric structure or bias conditions, the device has high potential as an electric device for extremely high power, high frequency and high temperature. © 2003 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The promising theoretical properties of diamond, together with the recent advances in producing high-quality single crystal diamond substrates, have increased the interest in using diamond in power electronic devices. This paper presents numerical and experimental off-state results for a diamond Schottky barrier diode (SBD), one of most studied unipolar devices in diamond. Finding a suitable termination structure is an essential step towards designing a high voltage diamond device. The ramp oxide structure shows very encouraging electronic performance when used to terminate diamond SBDs. High-k dielectrics are also considered in order to further improve the reliability and electrical performance of the structure. © 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This document presents the modeling and characterization of novel optical devices based on periodic arrays of multiwalled carbon nanotubes. Vertically aligned carbon nanotubes can be grown in the arrangement of two-dimensional arrays of precisely determined dimensions. Having their dimensions comparable to the wavelength of light makes carbon nanotubes good candidates for utilization in nano-scale optical devices. We report that highly dense periodic arrays of multiwalled carbon nanotubes can be utilized as sub-wavelength structures for establishing advanced optical materials, such as metamaterials and photonic crystals. We demonstrate that when carbon nanotubes are grown close together at spacing of the order of few hundred nanometers, they display artificial optical properties towards the incident light, acting as metamaterials. By utilizing these properties we have established micro-scaled plasmonic high pass filter which operates in the optical domain. Highly dense arrays of multiwalled also offer a periodic dielectric constant to the incident light and display interesting photonic band gaps, which are frequency domains within which on wave propagation can take place. We have utilized these band gaps displayed by a periodic nanotube array, having 400 nm spacing, to construct photonic crystals based optical waveguides and switches. © 2011 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report an InGaAsP/InP MQW phase modulator operating over the entire 1.55μm fiber band with high phase modulation efficiency and low loss modulation. The spectral dependence of the electro-refraction in a MQW structure is measured for the first time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper authors report the first demonstration of a diode laser powered Kerr effect device, consisting of a single birefringent fiber, able to phase-shift and switch an optical signal generated by a second laser diode. They have obtained fast, stable phase-shifting of 90° in a single fiber, at a coupled pump power of only 20 mW. Using this phase shift to induce polarization switching with resultant gating, 25% modulation of the diode laser signal has been observed, with a detection limited-rise time of 10ns.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We discuss some fundamental characteristics of a phase-modulating device suitable to holographically project a monochrome video frame with 1280 x 720 resolution. The phase-modulating device is expected to be a liquid crystal over silicon chip with silicon area similar to that of commercial devices. Its basic characteristics, such as number of pixels, bits per pixel, and pixel dimensions, are optimized in terms of image quality and optical efficiency. Estimates of the image quality are made from the noise levels and contrast, while efficiency is calculated by considering the beam apodization, device dead space, diffraction losses, and the sinc envelope.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel CMOS-compatible, heavily doped drift auxiliary cathode lateral insulated gate transistor (HDD-ACLIGT) structure is analyzed using two-dimensional device simulation techniques. Simulation results indicate that low on-resistance and a fast turn-off time of less than 50 ns can be achieved by incorporating an additional n+ region which is self-aligned to the gate between the p+ auxiliary cathode and the p well, together with an extended p buried layer in an anode-shorted modified lateral insulated gate transistor (MLIGT) structure. The on-state and its transient performance are analyzed in detail. The on-state performances of the HDD-ACLIGT and the MLIGT are compared and discussed. The results indicate that the HDD-ACLIGT structure is well suited for HVICs. The device is also well suited for integration with self-aligned digital CMOS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A synaptic plane rendered by an array of smart pixels was described regarding its application as a complementary component for neural network implementation. The smart spatial light modulator featured auto-modification abilities. Thus, an optical system incorporating this device can show self-reliant optical learning. Furthermore, the optical system design, in the area of its optical interconnection scheme, is highly flexible since the independent weight-plane pixels eliminated the difficulty between weight update calculation and weight representation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years a variety of experimental and theoretical work has been reported on the use of semiconductor optical amplifiers for high speed wavelength conversion. However little work has addressed the dynamic limitations of this conversion process in detail with a view to device optimization. In this paper, a detailed study of the conversion process is carried out in order to optimize device parameters and drive conditions for increased conversion speed and improved modulation index.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An integrated multiwavelength grating cavity (MGC) laser fabricated by selective area regrowth is demonstrated. In addition to allowing wavelength conversion, the device can perform various important network functions such as space switching and multiplexing. The use of the device for these functions offers several advantages from a wavelength division multiplexing (WDM) network, such as flexibility, reduced component count, size, and the associated cost reduction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel InGaAs/InGaAsP/InP integrated multiwavelength grating cavity laser is presented, which has been used to demonstrate space switching and simultaneous all-optical wavelength conversion at bit rates of 2.488 Gbit/s. This has been achieved using a single monolithically integrated device without the need for post-filtering to separate the converted signal from the input.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have fabricated an ultra-compact 4×4 optical matrix on InP/InGaAsP material. 1×4 MMI couplers and TIR mirrors are employed to produce a compact 1×2 mm2 device. A CH4/H2/O2 RIE dry etch process has been used to realize two-level dry etching: deep-etch for both the MMI couplers and the mirrors and shallow-etch for the rest of the routing waveguides. It was found that a metal/dielectric bilayer mask is essential for multi-dry-etch processes and high profile verticality. We have found a Ti intermediate mask for the deep-etch process which is removable by SF6 dry-etch before the following shallow process. Dry-etch removal of the intermediate mask is necessary to protect the deep-etched mirror sidewall.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The recent developments in nanotechnology are reviewed, with particular emphasis on its application in microsystem technology where increased reliability is achieved by integrating the sensor and the readout electronics on the same substrate. New applications may be possible using integrated micromechanical clips to connect optic fibers and components in integrated silicon systems. Some of the key developments in enabling technologies are also described, including the control of thin film deposition, nanostructuring to tailor the properties of thin film, silicon micromachining to make sensors, and microclips for the low-cost assembly of integrated optical microsystems.