203 resultados para linear feedback control
Resumo:
Active Voltage Control (AVC) is an implementation of classic Proportional-Derivative (PD) control and multi-loop feedback control to force an IGBT to follow a pre-set switching trajectory. Previously, AVC was mainly used for controlling series-connected IGBTs in order to enable voltage balance between IGBTs. In this paper, the nonlinear IGBT turn-off transient is further discussed and the turnoff of a single IGBT under AVC is further optimised in order to meet the demand of Power Electronic Building Block (PEBB) applications. © 2013 IEEE.
Resumo:
Active Voltage Control (AVC) is an implementation of classic Proportional-Derivative (PD) control and multi-loop feedback control to force IGBT to follow a pre-set switching trajectory. The initial objective of AVC was mainly to synchronise the switching of IGBTs connected in series so as to realise voltage balancing between devices. For a single IGBT switching, the AVC reference needs further optimisation. Thus, a predictive manner of AVC reference generation is required to cope with the nonlinear IGBT switching parameters while performing low loss switching. In this paper, an improved AVC structure is adopted along with a revised reference which accommodates the IGBT nonlinearity during switching and is predictive based on current being switched. Experimental and simulation results show that close control of a single IGBT switching is realised. It is concluded that good performance can be obtained, but the proposed method needs careful stability analysis for parameter choice. © 2013 IEEE.
Resumo:
We investigate performance bounds for feedback control of distributed plants where the controller can be centralized (i.e. it has access to measurements from the whole plant), but sensors only measure differences between neighboring subsystem outputs. Such "distributed sensing" can be a technological necessity in applications where system size exceeds accuracy requirements by many orders of magnitude. We formulate how distributed sensing generally limits feedback performance robust to measurement noise and to model uncertainty, without assuming any controller restrictions (among others, no "distributed control" restriction). A major practical consequence is the necessity to cut down integral action on some modes. We particularize the results to spatially invariant systems and finally illustrate implications of our developments for stabilizing the segmented primary mirror of the European Extremely Large Telescope. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
The human motor system is remarkably proficient in the online control of visually guided movements, adjusting to changes in the visual scene within 100 ms [1-3]. This is achieved through a set of highly automatic processes [4] translating visual information into representations suitable for motor control [5, 6]. For this to be accomplished, visual information pertaining to target and hand need to be identified and linked to the appropriate internal representations during the movement. Meanwhile, other visual information must be filtered out, which is especially demanding in visually cluttered natural environments. If selection of relevant sensory information for online control was achieved by visual attention, its limited capacity [7] would substantially constrain the efficiency of visuomotor feedback control. Here we demonstrate that both exogenously and endogenously cued attention facilitate the processing of visual target information [8], but not of visual hand information. Moreover, distracting visual information is more efficiently filtered out during the extraction of hand compared to target information. Our results therefore suggest the existence of a dedicated visuomotor binding mechanism that links the hand representation in visual and motor systems.
Resumo:
This review will focus on the possibility that the cerebellum contains an internal model or models of the motor apparatus. Inverse internal models can provide the neural command necessary to achieve some desired trajectory. First, we review the necessity of such a model and the evidence, based on the ocular following response, that inverse models are found within the cerebellar circuitry. Forward internal models predict the consequences of actions and can be used to overcome time delays associated with feedback control. Secondly, we review the evidence that the cerebellum generates predictions using such a forward model. Finally, we review a computational model that includes multiple paired forward and inverse models and show how such an arrangement can be advantageous for motor learning and control.
Resumo:
Modern theories of motor control incorporate forward models that combine sensory information and motor commands to predict future sensory states. Such models circumvent unavoidable neural delays associated with on-line feedback control. Here we show that signals in human muscle spindle afferents during unconstrained wrist and finger movements predict future kinematic states of their parent muscle. Specifically, we show that the discharges of type Ia afferents are best correlated with the velocity of length changes in their parent muscles approximately 100-160 ms in the future and that their discharges vary depending on motor sequences in a way that cannot be explained by the state of their parent muscle alone. We therefore conclude that muscle spindles can act as "forward sensory models": they are affected both by the current state of their parent muscle and by efferent (fusimotor) control, and their discharges represent future kinematic states. If this conjecture is correct, then sensorimotor learning implies learning how to control not only the skeletal muscles but also the fusimotor system.
Resumo:
Optimal feedback control postulates that feedback responses depend on the task relevance of any perturbations. We test this prediction in a bimanual task, conceptually similar to balancing a laden tray, in which each hand could be perturbed up or down. Single-limb mechanical perturbations produced long-latency reflex responses ("rapid motor responses") in the contralateral limb of appropriate direction and magnitude to maintain the tray horizontal. During bimanual perturbations, rapid motor responses modulated appropriately depending on the extent to which perturbations affected tray orientation. Specifically, despite receiving the same mechanical perturbation causing muscle stretch, the strongest responses were produced when the contralateral arm was perturbed in the opposite direction (large tray tilt) rather than in the same direction or not perturbed at all. Rapid responses from shortening extensors depended on a nonlinear summation of the sensory information from the arms, with the response to a bimanual same-direction perturbation (orientation maintained) being less than the sum of the component unimanual perturbations (task relevant). We conclude that task-dependent tuning of reflexes can be modulated online within a single trial based on a complex interaction across the arms.
Resumo:
Time-stepping finite element analysis of the BDFM for a specific load condition is shown to be a challenging problem because the excitation required cannot be predetermined and the BDFM is not open loops stable for all operating conditions. A simulation approach using feedback control to set the torque and stabilise the BDFM is presented together with implementation details. The performance of the simulation approach is demonstrated with an example and computed results are compared with measurements.
Resumo:
This paper addresses the design of mobile sensor networks for optimal data collection. The development is strongly motivated by the application to adaptive ocean sampling for an autonomous ocean observing and prediction system. A performance metric, used to derive optimal paths for the network of mobile sensors, defines the optimal data set as one which minimizes error in a model estimate of the sampled field. Feedback control laws are presented that stably coordinate sensors on structured tracks that have been optimized over a minimal set of parameters. Optimal, closed-loop solutions are computed in a number of low-dimensional cases to illustrate the methodology. Robustness of the performance to the influence of a steady flow field on relatively slow-moving mobile sensors is also explored © 2006 IEEE.
Resumo:
We provide feedback control laws to stabilize formations of multiple, unit speed particles on smooth, convex, and closed curves with definite curvature. As in previous work we exploit an analogy with coupled phase oscillators to provide controls which isolate symmetric particle formations that are invariant to rigid translation of all the particles. In this work, we do not require all particles to be able to communicate; rather we assume that inter-particle communication is limited and can be modeled by a fixed, connected, and undirected graph. Because of their unique spectral properties, the Laplacian matrices of circulant graphs play a key role. The methodology is demonstrated using a superellipse, which is a type of curve that includes circles, ellipses, and rounded rectangles. These results can be used in applications involving multiple autonomous vehicles that travel at constant speed around fixed beacons. ©2006 IEEE.
Resumo:
The paper addresses the rhythmic stabilization of periodic orbits in a wedge billiard with actuated edges. The output feedback strategy, based on the sole measurement of impact times, results from the combination of a stabilizing state feedback control law and a nonlinear deadbeat state estimator. It is shown that the robustness of both the control law and the observer leads to a simple rhythmic controller achieving a large basin of attraction. Copyright © 2005 IFAC.
Resumo:
This paper introduces a stabilization problem for an elementary impact control system in the plane. The rich dynamical properties of the wedge billiard, combined to the relevance of the associated stabilization problem for feedback control issues in legged robotics make it a valuable benchmark for energy-based stabilization of impact control systems.
Resumo:
Networked control systems (NCSs) have attracted much attention in the past decade due to their many advantages and growing number of applications. Different than classic control systems, resources in NCSs, such as network bandwidth and communication energy, are often limited, which degrade the closed-loop system performance and may even cause the system to become unstable. Seeking a desired trade-off between the closed-loop system performance and the limited resources is thus one heated area of research. In this paper, we analyze the trade-off between the sensor-to-controller communication rate and the closed-loop system performance indexed by the conventional LQG control cost. We present and compare several sensor data schedules, and demonstrate that two event-based sensor data schedules provide better trade-off than an optimal offline schedule. Simulation examples are provided to illustrate the theories developed in the paper. © 2012 AACC American Automatic Control Council).