57 resultados para intra-cellular trafficking


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hidden Markov model (HMM)-based speech synthesis systems possess several advantages over concatenative synthesis systems. One such advantage is the relative ease with which HMM-based systems are adapted to speakers not present in the training dataset. Speaker adaptation methods used in the field of HMM-based automatic speech recognition (ASR) are adopted for this task. In the case of unsupervised speaker adaptation, previous work has used a supplementary set of acoustic models to estimate the transcription of the adaptation data. This paper first presents an approach to the unsupervised speaker adaptation task for HMM-based speech synthesis models which avoids the need for such supplementary acoustic models. This is achieved by defining a mapping between HMM-based synthesis models and ASR-style models, via a two-pass decision tree construction process. Second, it is shown that this mapping also enables unsupervised adaptation of HMM-based speech synthesis models without the need to perform linguistic analysis of the estimated transcription of the adaptation data. Third, this paper demonstrates how this technique lends itself to the task of unsupervised cross-lingual adaptation of HMM-based speech synthesis models, and explains the advantages of such an approach. Finally, listener evaluations reveal that the proposed unsupervised adaptation methods deliver performance approaching that of supervised adaptation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two control algorithms have been developed for a minimally invasive axial-flow ventricular assist device (VAD) for placement in the descending aorta. The purpose of the device is to offload the left ventricle and to augment lower body perfusion in patients with moderate congestive heart failure. The VAD consists of an intra-aortic impeller with a built-in permanent magnet rotor and an extra-aortic stator. The control algorithms, which use pressure readings upstream and downstream of the VAD to determine the pump status, have been tested in a mock circulatory system under two conditions, namely with or without afterload sensitivity. The results give an insight into controller design for an intra-aortic blood pump working in series with the heart.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A permanent-magnet motor has been designed for an innovative axial-flow ventricular assist device (VAD), to be placed in the descending aorta, intended to offload the left ventricle and augment renal perfusion in patients with congestive heart failure (CHF). For this application, an intra-aortic impeller with a built-in permanent magnet rotor is driven by an extraaortic stator working in synchronism with the natural heart. To meet this need, a two-dimensional analytical model has been developed in the MATLAB environment to estimate machine parameters; finite element analysis (FEA) has been used to refine the results. A prototype blood pump equipped with an innovative motor designed from the procedure above has been tested in a mock loop representing the human circulatory system. The performance of VAD incorporating the motor is presented. © 2009 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Non-covalent functionalization of CoMoCAT single-wall carbon nanotubes (SWNTs) by bovine serum albumin (BSA) was achieved. Photoluminescence spectra for the functionalized nanotubes showed good dispersion by BSA functionalization. Raman spectra were taken for the sonicated SWNT-BSA solution to establish the signal versus concentration correlation. Cellular uptake of functionalized carbon nanotubes by mouse macrophage (RAW264.7) was then investigated using Raman spectroscopy. For a seeding density of 50% confluence in a culture solution containing 10 μg/ml of BSA-SWNTs, uptake of 200 μg/ml by the macrophages was recorded after 23hr incubation, indicating an active uptake of SWNTs. © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the spectral characteristics of bovine serum albumin (BSA) protein conjugated single-wall carbon nanotubes (SWNTs), and quantify their uptake by macrophages. The binding of BSA onto the SWNT surface is found to change the protein structure and to increase the doping of the nanotubes. The G-band Raman intensity follows a well-defined power law for SWNT concentrations of up to 33 μg ml-1 in aqueous solutions. Subsequently, in vitro experiments demonstrate that incubation of BSA-SWNT complexes with macrophages affects neither the cellular growth nor the cellular viability over multiple cell generations. Using wide spot Raman spectroscopy as a fast, non-destructive method for statistical quantification, we observe that macrophages effectively uptake BSA-SWNT complexes, with the average number of nanotubes internalized per cell remaining relatively constant over consecutive cell generations. The number of internalized SWNTs is found to be ∼30 × 106 SWNTs/cell for a 60 mm-2 seeding density and ∼100 × 10 6 SWNTs/cell for a 200 mm-2 seeding density. Our results show that BSA-functionalized SWNTs are an efficient molecular transport system with low cytotoxicity maintained over multiple cell generations. © 2013 IOP Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Within the spectrum of extratesticular mesenchymal tumors in the scrotum and perineum lies cellular angiofibroma, also known as angiomyofibroblastoma-like tumor, a rare lesion originally described to almost exclusively occur in the vulva, perineum, and pelvis of women. We report a case of this tumor, with an adjacent scrotal lipoma, occurring in a 60-year-old male who presented to our department with a firm palpable scrotal mass. To our knowledge, the MRI findings of this entity have yet to be described in the radiological literature. We present the MRI features of cellular angiofibroma that are consistent with the pathological characteristics of this entity-a benign cellular and fibrous tumor with prominent vascularity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Endothelial filopodia play key roles in guiding the tubular sprouting during angiogenesis. However, their dynamic morphological characteristics, with the associated implications in cell motility, have been subjected to limited investigations. In this work, the interaction between endothelial cells and extracellular matrix fibrils was recapitulated in vitro, where a specific focus was paid to derive the key morphological parameters to define the dynamics of filopodium-like protrusion during cell motility. Based on one-dimensional gelatin fibrils patterned by near-field electrospinning (NFES), we study the response of endothelial cells (EA.hy926) under normal culture or ROCK inhibition. It is shown that the behaviour of temporal protrusion length versus cell motility can be divided into distinct modes. Persistent migration was found to be one of the modes which permitted cell displacement for over 300 μm at a speed of approximately 1 μm min-1. ROCK inhibition resulted in abnormally long protrusions and diminished the persistent migration, but dramatically increased the speeds of protrusion extension and retraction. Finally, we also report the breakage of protrusion during cell motility, and examine its phenotypic behaviours. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerous experimental studies have established that cells can sense the stiffness of underlying substrates and have quantified the effect of substrate stiffness on stress fibre formation, focal adhesion area, cell traction, and cell shape. In order to capture such behaviour, the current study couples a mixed mode thermodynamic and mechanical framework that predicts focal adhesion formation and growth with a material model that predicts stress fibre formation, contractility, and dissociation in a fully 3D implementation. Simulations reveal that SF contractility plays a critical role in the substrate-dependent response of cells. Compliant substrates do not provide sufficient tension for stress fibre persistence, causing dissociation of stress fibres and lower focal adhesion formation. In contrast, cells on stiffer substrates are predicted to contain large amounts of dominant stress fibres. Different levels of cellular contractility representative of different cell phenotypes are found to alter the range of substrate stiffness that cause the most significant changes in stress fibre and focal adhesion formation. Furthermore, stress fibre and focal adhesion formation evolve as a cell spreads on a substrate and leading to the formation of bands of fibres leading from the cell periphery over the nucleus. Inhibiting the formation of FAs during cell spreading is found to limit stress fibre formation. The predictions of this mutually dependent material-interface framework are strongly supported by experimental observations of cells adhered to elastic substrates and offer insight into the inter-dependent biomechanical processes regulating stress fibre and focal adhesion formation. © 2013 Springer-Verlag Berlin Heidelberg.