47 resultados para infinite branching
Resumo:
Turbomachinery noise radiating into the rearward arc is an important problem. This noise is scattered by the trailing edges of the nacelle and the jet exhaust, and interacts with the shear layers between the external flow, bypass stream and jet, en route to the far field. In the past a range of relevant model problems involving semi-infinite cylinders have been solved. However, one limitation of these previous solutions is that they do not allow for the jet nozzle protruding a finite distance beyond the end of the nacelle (or in certain configurations being buried a finite distance upstream). With this in mind, we have used the matrix Wiener-Hopf technique to allow precisely this finite nacelle-jet nozzle separation to be included. We have previously reported results for the case of hard-walled ducts, which requires factorisation of a 2 × 2 matrix. In this paper we extend this work by allowing one of the duct walls, in this case the outer wall of the jet pipe, to be acoustically lined. This results in the need to factorise a 3 × 3 matrix, which is completed by use of a combination of pole-removal and Pad́e approximant techniques. Sample results are presented, investigating in particular the effects of exit plane stagger and liner impedance. Here we take the mean flow to be zero, but extension to nonzero Mach numbers in the core and bypass flow has also been completed. Copyright © 2009 by Nigel Peake & Ben Veitch.
Resumo:
We present results on the stability of compressible inviscid swirling flows in an annular duct. Such flows are present in aeroengines, for example in the by-pass duct, and there are also similar flows in many aeroacoustic or aeronautical applications. The linearised Euler equations have a ('critical layer') singularity associated with pure convection of the unsteady disturbance by the mean flow, and we focus our attention on this region of the spectrum. By considering the critical layer singularity, we identify the continuous spectrum of the problem and describe how it contributes to the unsteady field. We find a very generic family of instability modes near to the continuous spectrum, whose eigenvalue wavenumbers form an infinite set and accumulate to a point in the complex plane. We study this accumulation process asymptotically, and find conditions on the flow to support such instabilities. It is also found that the continuous spectrum can cause a new type of instability, leading to algebraic growth with an exponent determined by the mean flow, given in the analysis. The exponent of algebraic growth can be arbitrarily large. Numerical demonstrations of the continuous spectrum instability, and also the modal instabilities are presented.