107 resultados para high power induction machine


Relevância:

100.00% 100.00%

Publicador:

Resumo:

During high-power continuous wave (cw) Nd:yttritium-aluminum-garnet (YAG) laser welding a vapor plume is formed containing vaporized material ejected from the keyhole. The gas used as a plume control mechanism affects the plume shape but not its temperature, which has been found to be less than 3000 K, independent of the atmosphere and plume control gases. In this study high-power (up to 8 kW) cw Nd:YAG laser welding has been performed under He, Ar, and N2 gas atmospheres, extending the power range previously studied. The plume was found to contain very small evaporated particles of diameter less than 50 nm. Rayleigh and Mie scattering theories were used to calculate the attenuation coefficient of the incident laser power by these small particles. In addition the attenuation of a 9 W Nd:YAG probe laser beam, horizontally incident across the plume generated by the high-power Nd:YAG laser, was measured at various positions with respect to the beam-material interaction point. Up to 40% attenuation of the probe laser power was measured at positions corresponding to zones of high concentration of vapor plume, shown by high-speed video measurements. These zones interact with the high-power Nd:YAG laser beam path and, can result in significant laser power attenuation. © 2004 Laser Institute of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During high-power cw Nd:YAG laser welding a vapour plume is formed containing vaporised material ejected from the keyhole. Spectroscopic studies of the vapour emission have demonstrated that the vapour can be considered as thermally excited gas with a stable temperature (less than 3000K), not as partially ionised plasma. In this paper, a review of temperatures in the vapour plume is presented. The difficulties in the analysis of the plume spectroscopic results are reviewed and explained. It is shown that particles present in the vapour interact with the laser beam, attenuating it. The attenuation can be calculated with Mie scattering theory, however, vaporisation and particle formation also both play a major role in this process. The laser beam is also defocused due to the scattering part of the attenuation mechanism, changing the energy density in the laser beam. Methods for mitigating the effects of the laser beam-vapour interaction, using control gases, are presented together with their advantages and disadvantages. This 'plume control' has two complementary roles: firstly, the gas must divert the vapour plume from out of the laser beam path, preventing the attenuation. Secondly, the gas has to stabilise the front wall of the keyhole, to prevent porosity formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an investigation into the losses in a three-phase induction motor under different pulse width modulation (PWM) excitation conditions. The impacts of Sinusoidal PWM, Space Vector PWM and Discontinuous PWM on machine loss are compared and studied. Finite element analysis simulations are employed to predict the machine losses with the loss breakdown analysis under different PWM schemes. Direct Calorimetric measurements are utilized to verify the finite element modeling and provide direct quantifications of machine loss under modern PWM techniques. © 2008 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ultrafast passively mode-locked lasers with spectral tuning capability and high output power have widespread applications in biomedical research, spectroscopy and telecommunications [1,2]. Currently, the dominant technology is based on semiconductor saturable absorber mirrors (SESAMs) [2,3]. However, these typically have a narrow tuning range, and require complex fabrication and packaging [2,3]. A simple, cost-effective alternative is to use Single Wall Carbon Nanotubes (SWNTs) [4,10] and Graphene [10,14]. Wide-band operation is possible using SWNTs with a wide diameter distribution [5,10]. However, SWNTs not in resonance are not used and may contribute to unwanted insertion losses [10]. The linear dispersion of the Dirac electrons in graphene offers an ideal solution for wideband ultrafast pulse generation [10,15]. © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a comprehensive theoretical study of the Trench Insulated Gate Bipolar Transistors (TIGBT). Specific physical and geometrical effects, such as the accumulation layer injection, increased channel density, increased channel charge and transversal electric field modulation are discussed. The potential advantages of the Trench IGBT over its conventional planar variant are highlighted. It is concluded that the Trench IGBT is one of the most promising structures in the area of high voltage MOS-controllable switching devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-power converters usually need longer dead-times than their lower-power counterparts and a lower switching frequency. Also due to the complicated assembly layout and severe variations in parasitics, in practice the conventional dead-time specific adjustment or compensation for high-power converters is less effective, and usually this process is time-consuming and bespoke. For general applications, minimising or eliminating dead-time in the gate drive technology is a desirable solution. With the growing acceptance of power electronics building blocks (PEBB) and intelligent power modules (IPM), gate drives with intelligent functions are in demand. Smart functions including dead time elimination/minimisation can improve modularity, flexibility and reliability. In this paper, a dead-time minimisation using Active Voltage Control (AVC) gate drive is presented. © 2012 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We develop an analytical theory of high-power passively mode-locked lasers with a slow absorber; the theory is valid at pulse energies well exceeding the saturation energy. We analyze the Haus modelocking master equation in the pulse-energy-domain representation, approximating the intensity profile function by a series in the vicinity of its peak value. We consider the high-power operation regime of subpicosecond blue-violet GaN mode-locked diode lasers, using the approach developed. © 2010 Springer Science+Business Media, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The RF locking of a self-Q-switching diode laser is shown to reduce the jitter of a 2.48 GHz train of 1 W peak power picosecond pulses to less than 300 fs. By using direct modulation of the loss in the Q-switched laser, direct encoding of data has been achieved at rates in excess of 2 Gbit/s.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High power bandwidth-limited picosecond pulses with peak powers in excess of 200 mW have been generated using multi-contact distributed feedback laser diodes for the first time. The pulses have widths typically less than 10 ps, time-bandwidth products of as little as 0·24, and can be generated on demand at generator limited repetition rates of up to 140 MHz.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development is described of a computer-controlled bowing machine that can bow a string with a range of gestures that match or exceed the capabilities of a human violinist. Example measurements of string vibration under controlled bowing conditions are shown, including a Schelleng diagram and a set of Guettler diagrams, for the open D string of a cello. For some results a rosin-coated rod was used in place of a conventional bow, to provide quantitative data for comparison with theoretical predictions. The results show qualitative consistency with the predictions of Schelleng and Guettler, but details are revealed that go beyond the limitations of existing models. © S. Hirzel Verlag · EAA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a critical comparison of static and switching performance of commercially available 1.2 kV SiC BJTs, MOSFETs and JFETs with 1.2 kV Si IGBTs. The experiments conducted are mainly focussed on investigating the temperature dependence of device performance. As an emerging commercial device, special emphasis is placed on SiC BJTs. The experimental data indicate that the SiC BJTs have relatively smaller conduction, off-state and turn-off switching losses, in comparison to the other devices. Furthermore, SiC BJTs have demonstrated much higher static current gain values in comparison to their silicon counterparts, thereby minimising driver losses. Based on the results, the suitability of SiC devices for high power density applications has been discussed. © 2013 IEEE.