54 resultados para flying robots
Resumo:
Due to technological limitations, robot actuators are often designed for specific tasks with narrow performance goals, whereas a wide range of behaviors is necessary for autonomous robots in uncertain complex environments. In an effort to increase the versatility of actuators, we introduce a new concept of multimodal actuation (MMA) that employs dynamic coupling in the form of clutches and brakes to change its mode of operation. The dynamic coupling allows motors and passive elements such as springs to be engaged and disengaged within a single actuator. We apply the concept to a linear series elastic actuator which uses friction brakes controlled online for the dynamic coupling. With this prototype, we are able to demonstrate several modes of operation including stiff position control, series elastic actuation as well as the possibility to store and release energy in a controlled manner for explosive tasks such as jumping. In this paper, we model the proposed concept of actuation and show a systematic performance analysis of the physical prototype that we developed in our laboratory. © 1996-2012 IEEE.
Resumo:
Due to technological limitations robot actuators are often designed for specific tasks with narrow performance goals, whereas a wide range of output and behaviours is necessary for robots to operate autonomously in uncertain complex environments. We present a design framework that employs dynamic couplings in the form of brakes and clutches to increase the performance and diversity of linear actuators. The couplings are used to switch between a diverse range of discrete modes of operation within a single actuator. We also provide a design solution for miniaturized couplings that use dry friction to produce rapid switching and high braking forces. The couplings are designed so that once engaged or disengaged no extra energy is consumed. We apply the design framework and coupling design to a linear series elastic actuator (SEA) and show that this relatively simple implementation increases the performance and adds new behaviours to the standard design. Through a number of performance tests we are able to show rapid switching between a high and a low impedance output mode; that the actuator's spring can be charged to produce short bursts of high output power; and that the actuator has additional passive and rigid modes that consume no power once activated. Robots using actuators from this design framework would see a vast increase in their behavioural diversity and improvements in their performance not yet possible with conventional actuator design. © 2012 IEEE.
Resumo:
In order to understand the underlying mechanisms of animals' agility, dexterity and efficiency in motor control, there has been an increasing interest in the study of gait patterns in biological and artificial legged systems. This paper presents a novel approach to the study of gait patterns which makes use of intrinsic mechanical dynamics of robotic systems. Each of these robots consists of a U-shape elastic beam and exploits free vibration to generate different gait patterns. We developed a conceptual model for these robots, and through simulation and real-world experiments, we show three distinct mechanisms for generating four different gait patterns in these robots. © 2012 IEEE.
Resumo:
THERE ARE MANY different kinds of robots: factory automation systems that weld and assemble car engines; machines that place chocolates into boxes; medical devices that support surgeons in operations requiring high-precision manipulation; cars that drive automatically over long distances; vehicles for planetary exploration; mechanisms for powerline or oil platform inspection; toys and educational toolkits for schools and universities; service robots that deliver meals, clean floors, or mow lawns; and "companion robots" that are real partners for humans and share our daily lives. In a sense, all these robots are inspired by biological systems; it's just a matter of degree. A driverless vehicle imitates animals moving autonomously in the world.© 2012 ACM.
Resumo:
The discipline of Artificial Intelligence (AI) was born in the summer of 1956 at Dartmouth College in Hanover, New Hampshire. Half of a century has passed, and AI has turned into an important field whose influence on our daily lives can hardly be overestimated. The original view of intelligence as a computer program - a set of algorithms to process symbols - has led to many useful applications now found in internet search engines, voice recognition software, cars, home appliances, and consumer electronics, but it has not yet contributed significantly to our understanding of natural forms of intelligence. Since the 1980s, AI has expanded into a broader study of the interaction between the body, brain, and environment, and how intelligence emerges from such interaction. This advent of embodiment has provided an entirely new way of thinking that goes well beyond artificial intelligence proper, to include the study of intelligent action in agents other than organisms or robots. For example, it supplies powerful metaphors for viewing corporations, groups of agents, and networked embedded devices as intelligent and adaptive systems acting in highly uncertain and unpredictable environments. In addition to giving us a novel outlook on information technology in general, this broader view of AI also offers unexpected perspectives into how to think about ourselves and the world around us. In this chapter, we briefly review the turbulent history of AI research, point to some of its current trends, and to challenges that the AI of the 21st century will have to face. © Springer-Verlag Berlin Heidelberg 2007.
Resumo:
It has long been the dream to build robots which could walk and run with ease. To date, the stance phase of walking robots has been characterized by the use of either straight, rigid legs, as is the case of passive walkers, or by the use of articulated, kinematically-driven legs. In contrast, the design of most hopping or running robots is based on compliant legs which exhibit quite natural behavior during locomotion. © 2006 Springer.
Resumo:
There is much to gain from providing walking machines with passive dynamics, e.g. by including compliant elements in the structure. These elements can offer interesting properties such as self-stabilization, energy efficiency and simplified control. However, there is still no general design strategy for such robots and their controllers. In particular, the calibration of control parameters is often complicated because of the highly nonlinear behavior of the interactions between passive components and the environment. In this article, we propose an approach in which the calibration of a key parameter of a walking controller, namely its intrinsic frequency, is done automatically. The approach uses adaptive frequency oscillators to automatically tune the intrinsic frequency of the oscillators to the resonant frequency of a compliant quadruped robot The tuning goes beyond simple synchronization and the learned frequency stays in the controller when the robot is put to halt. The controller is model free, robust and simple. Results are presented illustrating how the controller can robustly tune itself to the robot, as well as readapt when the mass of the robot is changed. We also provide an analysis of the convergence of the frequency adaptation for a linearized plant, and show how that analysis is useful for determining which type of sensory feedback must be used for stable convergence. This approach is expected to explain some aspects of developmental processes in biological and artificial adaptive systems that "develop" through the embodied system-environment interactions. © 2006 IEEE.
Resumo:
Exploiting the body dynamics to control the behavior of robots is one of the most challenging issues, because the use of body dynamics has a significant potential in order to enhance both complexity of the robot design and the speed of movement. In this paper, we explore the control strategy of rapid four-legged locomotion by exploiting the intrinsic body dynamics. Based on the fact that a simple model of four-legged robot is known to exhibit interesting locomotion behavior, this paper analyzes the characteristics of the dynamic locomotion for the purpose of the locomotion control. The results from a series of running experiments with a robot show that, by exploiting the unique characteristics induced by the body dynamics, the forward velocity can be controlled by using a very simple method, in which only one control parameter is required. Furthermore it is also shown that a few of such different control parameters exist, each of them can control the forward velocity. Interestingly, with these parameters, the robot exhibits qualitatively different behavior during the locomotion, which could lead to our comprehensive understanding toward the behavioral diversity of adaptive robotic systems. © 2005 IEEE.
Resumo:
Guided self-organization can be regarded as a paradigm proposed to understand how to guide a self-organizing system towards desirable behaviors, while maintaining its non-deterministic dynamics with emergent features. It is, however, not a trivial problem to guide the self-organizing behavior of physically embodied systems like robots, as the behavioral dynamics are results of interactions among their controller, mechanical dynamics of the body, and the environment. This paper presents a guided self-organization approach for dynamic robots based on a coupling between the system mechanical dynamics with an internal control structure known as the attractor selection mechanism. The mechanism enables the robot to gracefully shift between random and deterministic behaviors, represented by a number of attractors, depending on internally generated stochastic perturbation and sensory input. The robot used in this paper is a simulated curved beam hopping robot: a system with a variety of mechanical dynamics which depends on its actuation frequencies. Despite the simplicity of the approach, it will be shown how the approach regulates the probability of the robot to reach a goal through the interplay among the sensory input, the level of inherent stochastic perturbation, i.e., noise, and the mechanical dynamics. © 2014 by the authors; licensee MDPI, Basel, Switzerland.