63 resultados para flexibility
Resumo:
When considering the potential uptake and utilization of technology management tools by industry, it must be recognized that companies face the difficult challenges of selecting, adopting and integrating individual tools into a toolkit that must be implemented within their current organizational processes and systems. This situation is compounded by the lack of sound advice on integrating well-founded individual tools into a robust toolkit that has the necessary degree of flexibility such that they can be tailored for application to specific problems faced by individual organizations. As an initial stepping stone to offering a toolkit with empirically proven utility, this paper provides a conceptual foundation to the development of toolkits by outlining an underlying philosophical position based on observations from multiple research and commercial collaborations with industry. This stance is underpinned by a set of operationalized principles that can offer guidance to organizations when deciding upon the appropriate form, functions and features that should be embodied by any potential tool/toolkit. For example, a key objective of any tool is to aid decision-making and a core set of powerful, flexible, scaleable and modular tools should be sufficient to allow users to generate, explore, shape and implement possible solutions across a wide array of strategic issues. From our philosophical stance, the preferred mode of engagement is facilitated workshops with a participatory process that enables multiple perspectives and structures the conversation through visual representations in order to manage the cognitive load in the collaborative environment. The generic form of the tools should be configurable for the given context and utilized in a lightweight manner based on the premise of 'start small and iterate fast'. © 2012 Elsevier Inc.
Resumo:
We are developing a wind turbine blade optimisation package CoBOLDT (COmputa- tional Blade Optimisation and Load De ation Tool) for the optimisation of large horizontal- axis wind turbines. The core consists of the Multi-Objective Tabu Search (MOTS), which controls a spline parameterisation module, a fast geometry generation and a stationary Blade Element Momentum (BEM) code to optimise an initial wind turbine blade design. The objective functions we investigate are the Annual Energy Production (AEP) and the fl apwise blade root bending moment (MY0) for a stationary wind speed of 50 m/s. For this task we use nine parameters which define the blade chord, the blade twist (4 parameters each) and the blade radius. Throughout the optimisation a number of binary constraints are defined to limit the noise emission, to allow for transportation on land and to control the aerodynamic conditions during all phases of turbine operation. The test case shows that MOTS is capable to find enhanced designs very fast and eficiently and will provide a rich and well explored Pareto front for the designer to chose from. The optimised blade de- sign could improve the AEP of the initial blade by 5% with the same flapwise root bending moment or reduce MY0 by 7.5% with the original energy yield. Due to the fast runtime of order 10 seconds per design, a huge number of optimisation iterations is possible without the need for a large computing cluster. This also allows for increased design flexibility through the introduction of more parameters per blade function or parameterisation of the airfoils in future. © 2012 by Nordex Energy GmbH.
Resumo:
We are developing a wind turbine blade optimisation package CoBOLDT (COmputa- tional Blade Optimisation and Load Deation Tool) for the optimisation of large horizontal- axis wind turbines. The core consists of the Multi-Objective Tabu Search (MOTS), which controls a spline parameterisation module, a fast geometry generation and a stationary Blade Element Momentum (BEM) code to optimise an initial wind turbine blade design. The objective functions we investigate are the Annual Energy Production (AEP) and the apwise blade root bending moment (MY0) for a stationary wind speed of 50 m/s. For this task we use nine parameters which define the blade chord, the blade twist (4 parameters each) and the blade radius. Throughout the optimisation a number of binary constraints are defined to limit the noise emission, to allow for transportation on land and to control the aerodynamic conditions during all phases of turbine operation. The test case shows that MOTS is capable to find enhanced designs very fast and efficiently and will provide a rich and well explored Pareto front for the designer to chose from. The optimised blade de- sign could improve the AEP of the initial blade by 5% with the same apwise root bending moment or reduce MY0 by 7.5% with the original energy yield. Due to the fast runtime of order 10 seconds per design, a huge number of optimisation iterations is possible without the need for a large computing cluster. This also allows for increased design flexibility through the introduction of more parameters per blade function or parameterisation of the airfoils in future. © 2012 AIAA.
Resumo:
Model-based and model-free controllers can, in principle, learn arbitrary actions to optimize their behavior, at least those actions that can be expressed and explored. Indeed, these are often referred to as instrumental controllers because their choices are learned to be instrumental for the delivery of desired outcomes. Although this flexibility is very powerful, it comes with an attendant cost of learning. Evolution appears to have endowed everything from the simplest organisms to us with powerful, pre-specified, but inflexible alternatives. These responses are termed Pavlovian, after the famous Russian physiologist and psychologist Pavlov. The responses of the Pavlovian controller are determined by evolutionary (phylogenetic) considerations rather than (ontogenetic) aspects of the contingent development or learning of an individual. These responses directly interact with instrumental choices arising from goal-directed and habitual controllers. This interaction has been studied in a wealth of animal paradigms, and can be helpful, neutral, or harmful, according to circumstance. Although there has been less careful or analytical study of it in humans, it can be interpreted as underpinning a wealth of behavioral aberrations. © 2009 Elsevier Inc. All rights reserved.
Resumo:
Inkjet printing relies on the formation of small liquid droplets to deliver precise amounts of material to a substrate under digital control. Inkjet technology is becoming relatively mature and is of great industrial interest thanks to its flexibility for graphical printing and its potential use in less conventional applications such as additive manufacturing and the production of printed electronics and other functional devices. Its advantages over traditional methods of printing include the following: it produces little or no waste, it is versatile because several different methods exist, it is noncontact, and it does not require a master template so that printed patterns can be readily modified on demand. However, the technology is in need of further development to become mainstream in emerging applications such as additive manufacturing (3D printing). This review contains a description of conventional and less common inkjet methods and surveys the current applications of inkjet in industry. This is followed by specific examples of the barriers, limitations, and challenges faced by inkjet technology in both graphical printing and manufacturing. © 2013 by Begell House, Inc.
Resumo:
This work addresses the challenging problem of unconstrained 3D human pose estimation (HPE) from a novel perspective. Existing approaches struggle to operate in realistic applications, mainly due to their scene-dependent priors, such as background segmentation and multi-camera network, which restrict their use in unconstrained environments. We therfore present a framework which applies action detection and 2D pose estimation techniques to infer 3D poses in an unconstrained video. Action detection offers spatiotemporal priors to 3D human pose estimation by both recognising and localising actions in space-time. Instead of holistic features, e.g. silhouettes, we leverage the flexibility of deformable part model to detect 2D body parts as a feature to estimate 3D poses. A new unconstrained pose dataset has been collected to justify the feasibility of our method, which demonstrated promising results, significantly outperforming the relevant state-of-the-arts. © 2013 IEEE.
Resumo:
Confronted with high variety and low volume market demands, many companies, especially the Japanese electronics manufacturing companies, have reconfigured their conveyor assembly lines and adopted seru production systems. Seru production system is a new type of work-cell-based manufacturing system. A lot of successful practices and experience show that seru production system can gain considerable flexibility of job shop and high efficiency of conveyor assembly line. In implementing seru production, the multi-skilled worker is the most important precondition, and some issues about multi-skilled workers are central and foremost. In this paper, we investigate the training and assignment problem of workers when a conveyor assembly line is entirely reconfigured into several serus. We formulate a mathematical model with double objectives which aim to minimize the total training cost and to balance the total processing times among multi-skilled workers in each seru. To obtain the satisfied task-to-worker training plan and worker-to-seru assignment plan, a three-stage heuristic algorithm with nine steps is developed to solve this mathematical model. Then, several computational cases are taken and computed by MATLAB programming. The computation and analysis results validate the performances of the proposed mathematical model and heuristic algorithm. © 2013 Springer-Verlag London.
Resumo:
The concepts of reliability, robustness, adaptability, versatility, resilience and flexibility have been used to describe how a system design can mitigate the likely impact of uncertainties without removing their sources. With the increasing number of publications on designing systems to have such ilities, there is a need to clarify the relationships between the different ideas. This short article introduces a framework to compare these different ways in which a system can be insensitive to uncertainty, clarifying their meaning in the context of complex system design. We focus on relationships between the ilities listed above and do not discuss in detail methods to design-for-ilities. © 2013 The Author(s). Published by Taylor & Francis.
Resumo:
Room-temperature tunable excitonic photoluminescence is demonstrated in alloy-tuned layered Inorganic-Organic (IO) hybrids, (C12H 25NH3)2PbI4(1-y)Br4y (y = 0 to 1). These perovskite IO hybrids adopt structures with alternating stacks of low-dimensional inorganic and organic layers, considered to be naturally self-assembled multiple quantum wells. These systems resemble stacked monolayer 2D semiconductors since no interlayer coupling exists. Thin films of IO hybrids exhibit sharp and strong photoluminescence (PL) at room-temperature due to stable excitons formed within the low-dimensional inorganic layers. Systematic variation in the observed exciton PL from 510 nm to 350 nm as the alloy composition is changed, is attributed to the structural readjustment of crystal packing upon increase of the Br content in the Pb-I inorganic network. The energy separation between exciton absorption and PL is attributed to the modified exciton density of states and diffusion of excitons from relatively higher energy states corresponding to bromine rich sites towards the lower energy iodine sites. Apart from compositional fluctuations, these excitons show remarkable reversible flips at temperature-induced phase transitions. All the results are successfully correlated with thermal and structural studies. Such structural engineering flexibility in these hybrids allows selective tuning of desirable exciton properties within suitable operating temperature ranges. Such wide-range PL tunability and reversible exciton switching in these novel IO hybrids paves the way to potential applications in new generation of optoelectronic devices. © 2013 AIP Publishing LLC.
Resumo:
The paper deals with the static analysis of pre-damaged Euler-Bernoulli beams with any number of unilateral cracks and subjected to tensile or compression forces combined with arbitrary transverse loads. The mathematical representation of cracks with a bilateral behaviour (i.e. always open) via Dirac delta functions is extended by introducing a convenient switching variable, which allows each crack to be open or closed depending on the sign of the axial strain at the crack centre. The proposed model leads to analytical solutions, which depend on four integration constants (to be computed by enforcing the boundary conditions) along with the Boolean switching variables associated with the cracks (whose role is to turn on and off the additional flexibility due to the presence of the cracks). An efficient computational procedure is also presented and numerically validated. For this purpose, the proposed approach is applied to two pre-damaged beams, with different damage and loading conditions, and the results so obtained are compared against those given by a standard finite element code (in which the correct opening of the cracks is pre-assigned), always showing a perfect agreement. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
The paper presents the design and performance analysis of a 6 MW medium-speed Brushless Doubly-Fed Induction Generation (Brushless DFIG) for a wind turbine drivetrain. Two machines with different frame sizes have been designed to show the flexibility of the design procedure. The mediumspeed Brushless DFIG in combination with a two stage gearbox offers a low-cost, low-maintenance and reliable drivetrain for wind turbine applications.
Resumo:
We investigate the Student-t process as an alternative to the Gaussian process as a non-parametric prior over functions. We derive closed form expressions for the marginal likelihood and predictive distribution of a Student-t process, by integrating away an inverse Wishart process prior over the co-variance kernel of a Gaussian process model. We show surprising equivalences between different hierarchical Gaussian process models leading to Student-t processes, and derive a new sampling scheme for the inverse Wishart process, which helps elucidate these equivalences. Overall, we show that a Student-t process can retain the attractive properties of a Gaussian process - a nonparamet-ric representation, analytic marginal and predictive distributions, and easy model selection through covariance kernels - but has enhanced flexibility, and predictive covariances that, unlike a Gaussian process, explicitly depend on the values of training observations. We verify empirically that a Student-t process is especially useful in situations where there are changes in covariance structure, or in applications such as Bayesian optimization, where accurate predictive covariances are critical for good performance. These advantages come at no additional computational cost over Gaussian processes.
Resumo:
The variety of laser systems available to industrial laser users is growing and the choice of the correct laser for a material target application is often based on an empirical assessment. Industrial master oscillator power amplifier systems with tuneable temporal pulse shapes have now entered the market, providing enormous pulse parameter flexibility in an already crowded parameter space. In this paper, an approach is developed to design interaction parameters based on observations of material responses. Energy and material transport mechanisms are studied using pulsed digital holography, post process analysis techniques and finite-difference modelling to understand the key response mechanisms for a variety of temporal pulse envelopes incident on a silicon (1/1/1) substrate. The temporal envelope is shown to be the primary control parameter of the source term that determines the subsequent material response and the resulting surface morphology. A double peak energy-bridged temporal pulse shape designed through direct application of holographic imaging data is shown to substantially improve surface quality. © 2014 IEEE.
Resumo:
The importance of properly exploiting a classifier's inherent geometric characteristics when developing a classification methodology is emphasized as a prerequisite to achieving near optimal performance when carrying out thematic mapping. When used properly, it is argued that the long-standing maximum likelihood approach and the more recent support vector machine can perform comparably. Both contain the flexibility to segment the spectral domain in such a manner as to match inherent class separations in the data, as do most reasonable classifiers. The choice of which classifier to use in practice is determined largely by preference and related considerations, such as ease of training, multiclass capabilities, and classification cost. © 1980-2012 IEEE.
Resumo:
We introduce a new approach for fabricating hollow microneedles using vertically-aligned carbon nanotubes (VA-CNTs) for rapid transdermal drug delivery. Here, we discuss the fabrication of the microneedles emphasizing the overall simplicity and flexibility of the method to allow for potential industrial application. By capitalizing on the nanoporosity of the CNT bundles, uncured polymer can be wicked into the needles ultimately creating a high strength composite of aligned nanotubes and polymer. Flow through the microneedles as well as in vitro penetration of the microneedles into swine skin is demonstrated. Furthermore, we present a trade study comparing the difficulty and complexity of the fabrication process of our CNT-polymer microneedles with other standard microneedle fabrication approaches. Copyright © Materials Research Society 2013.