148 resultados para finite element analysis (FEA)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper presents a multiscale procedure for the linear analysis of components made of lattice materials. The method allows the analysis of both pin-jointed and rigid-jointed microtruss materials with arbitrary topology of the unit cell. At the macroscopic level, the procedure enables to determine the lattice stiffness, while at the microscopic level the internal forces in the lattice elements are expressed in terms of the macroscopic strain applied to the lattice component. A numeric validation of the method is described. The procedure is completely automated and can be easily used within an optimization framework to find the optimal geometric parameters of a given lattice material. © 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is concerned with the development of efficient algorithms for propagating parametric uncertainty within the context of the hybrid Finite Element/Statistical Energy Analysis (FE/SEA) approach to the analysis of complex vibro-acoustic systems. This approach models the system as a combination of SEA subsystems and FE components; it is assumed that the FE components have fully deterministic properties, while the SEA subsystems have a high degree of randomness. The method has been recently generalised by allowing the FE components to possess parametric uncertainty, leading to two ensembles of uncertainty: a non-parametric one (SEA subsystems) and a parametric one (FE components). The SEA subsystems ensemble is dealt with analytically, while the effect of the additional FE components ensemble can be dealt with by Monte Carlo Simulations. However, this approach can be computationally intensive when applied to complex engineering systems having many uncertain parameters. Two different strategies are proposed: (i) the combination of the hybrid FE/SEA method with the First Order Reliability Method which allows the probability of the non-parametric ensemble average of a response variable exceeding a barrier to be calculated and (ii) the combination of the hybrid FE/SEA method with Laplace's method which allows the evaluation of the probability of a response variable exceeding a limit value. The proposed approaches are illustrated using two built-up plate systems with uncertain properties and the results are validated against direct integration, Monte Carlo simulations of the FE and of the hybrid FE/SEA models. © 2013 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A hybrid method for the incompressible Navier-Stokes equations is presented. The method inherits the attractive stabilizing mechanism of upwinded discontinuous Galerkin methods when momentum advection becomes significant, equal-order interpolations can be used for the velocity and pressure fields, and mass can be conserved locally. Using continuous Lagrange multiplier spaces to enforce flux continuity across cell facets, the number of global degrees of freedom is the same as for a continuous Galerkin method on the same mesh. Different from our earlier investigations on the approach for the Navier-Stokes equations, the pressure field in this work is discontinuous across cell boundaries. It is shown that this leads to very good local mass conservation and, for an appropriate choice of finite element spaces, momentum conservation. Also, a new form of the momentum transport terms for the method is constructed such that global energy stability is guaranteed, even in the absence of a pointwise solenoidal velocity field. Mass conservation, momentum conservation, and global energy stability are proved for the time-continuous case and for a fully discrete scheme. The presented analysis results are supported by a range of numerical simulations. © 2012 Society for Industrial and Applied Mathematics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper extends the air-gap element (AGE) to enable the modeling of flat air gaps. AGE is a macroelement originally proposed by Abdel-Razek et al.for modeling annular air gaps in electrical machines. The paper presents the theory of the new macroelement and explains its implementation within a time-stepped finite-element (FE) code. It validates the solution produced by the new macroelement by comparing it with that obtained by using an FE mesh with a discretized air gap. It then applies the model to determine the open-circuit electromotive force of an axial-flux permanent-magnet machine and compares the results with measurements.

Relevância:

100.00% 100.00%

Publicador: