61 resultados para finite difference time-domain analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dynamic analysis of a deepwater floating platform and the associated mooring/riser system should ideally be fully coupled to ensure a reliable response prediction. It is generally held that a time domain analysis is the only means of capturing the various coupling and nonlinear effects accurately. However, in recent work it has been found that for an ultra-deepwater floating system (2000m water depth), the highly efficient frequency domain approach can provide highly accurate response predictions. One reason for this is the accuracy of the drag linearization procedure over both first and second order motions, another reason is the minimal geometric nonlinearity displayed by the mooring lines in deepwater. In this paper, the aim is to develop an efficient analysis method for intermediate water depths, where both mooring/vessel coupling and geometric nonlinearity are of importance. It is found that the standard frequency domain approach is not so accurate for this case and two alternative methods are investigated. In the first, an enhanced frequency domain approach is adopted, in which line nonlinearities are linearized in a systematic way. In the second, a hybrid approach is adopted in which the low frequency motion is solved in the time domain while the high frequency motion is solved in the frequency domain; the two analyses are coupled by the fact that (i) the low frequency motion affects the mooring line geometry for the high frequency motion, and (ii) the high frequency motion affects the drag forces which damp the low frequency motion. The accuracy and efficiency of each of the methods are systematically compared. Copyright © 2007 by ASME.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Immersed Boundary Methods (IBM) the effect of complex geometries is introduced through the forces added in the Navier-Stokes solver at the grid points in the vicinity of the immersed boundaries. Most of the methods in the literature have been used with Cartesian grids. Moreover many of the methods developed in the literature do not satisfy some basic conservation properties (the conservation of torque, for instance) on non-uniform meshes. In this paper we will follow the RKPM method originated by Liu et al. [1] to build locally regularized functions that verify a number of integral conditions. These local approximants will be used both for interpolating the velocity field and for spreading the singular force field in the framework of a pressure correction scheme for the incompressible Navier-Stokes equations. We will also demonstrate the robustness and effectiveness of the scheme through various examples. Copyright © 2010 by ASME.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Terahertz time-domain spectroscopy measurements were made for vertically aligned multi-walled carbon nanotube (VACNT) films. We obtained the frequency dependent complex permittivity and conductivity (on the assumption that permeability μ = 1) of several samples exhibiting Drude behaviour for lossy metals. The obtained material properties of VACNT films provide information for potential microwave and terahertz applications. © 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is concerned with the development of efficient algorithms for propagating parametric uncertainty within the context of the hybrid Finite Element/Statistical Energy Analysis (FE/SEA) approach to the analysis of complex vibro-acoustic systems. This approach models the system as a combination of SEA subsystems and FE components; it is assumed that the FE components have fully deterministic properties, while the SEA subsystems have a high degree of randomness. The method has been recently generalised by allowing the FE components to possess parametric uncertainty, leading to two ensembles of uncertainty: a non-parametric one (SEA subsystems) and a parametric one (FE components). The SEA subsystems ensemble is dealt with analytically, while the effect of the additional FE components ensemble can be dealt with by Monte Carlo Simulations. However, this approach can be computationally intensive when applied to complex engineering systems having many uncertain parameters. Two different strategies are proposed: (i) the combination of the hybrid FE/SEA method with the First Order Reliability Method which allows the probability of the non-parametric ensemble average of a response variable exceeding a barrier to be calculated and (ii) the combination of the hybrid FE/SEA method with Laplace's method which allows the evaluation of the probability of a response variable exceeding a limit value. The proposed approaches are illustrated using two built-up plate systems with uncertain properties and the results are validated against direct integration, Monte Carlo simulations of the FE and of the hybrid FE/SEA models. © 2013 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using the Hybrid method (FE + SEA) it is possible to estimate the frequency response of an uncertain structure. The current work develops the Hybrid method to allow for time domain analysis of the shock response of a structure. Problems to be overcome when taking Hybrid method results into the time domain are a) the Hybrid method frequency response has no phase information, and b) the Hybrid method frequency response is smoothed in frequency and shows no modal peaks. In this paper the first problem has been overcome, using minimum phase reconstruction. Explanation of minimum phase reconstruction and its limitations are described, and application to shock problems described. © 2009 IOP Publishing Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new thermal model based on Fourier series expansion method has been presented for dynamic thermal analysis on power devices. The thermal model based on the Fourier series method has been programmed in MATLAB SIMULINK and integrated with a physics-based electrical model previously reported. The model was verified for accuracy using a two-dimensional Fourier model and a two-dimensional finite difference model for comparison. To validate this thermal model, experiments using a 600V 50A IGBT module switching an inductive load, has been completed under high frequency operation. The result of the thermal measurement shows an excellent match with the simulated temperature variations and temperature time-response within the power module. ©2008 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A formulation for coupled flow-deformation analysis of methane-hydrate extraction problems is presented. By assuming that the hydrate does not flow, a two phase flow formulation is considered, based on Darcy's law and capillary pressure relation. The formulation is implemented in the finite difference code FLAC. The code was used to investigate the stability of a methane extraction well by depressurizing the well. © 2005 Taylor & Francis Group, London.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a new approach to model the forces on a tread block for a free-rolling tyre in contact with a rough road. A theoretical analysis based on realistic tread mechanical properties and road roughness is presented, indicating partial contact between a tread block and a rough road. Hence an asperity-scale indentation model is developed using a semi-empirical formulation, taking into account both the rubber viscoelasticity and the tread block geometry. The model aims to capture the essential details of the contact at the simplest level, to make it suitable as part of a time-domain dynamic analysis of the coupled tyre-road system. The indentation model is found to have a good correlation with the finite element (FE) predictions and is validated against experimental results using a rolling contact rig. When coupled to a deformed tyre belt profile, the indentation model predicts normal and tangential force histories inside the tyre contact patch that show good agreement with FE predictions. © 2012 Elsevier B.V..

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reinforced concrete buildings in low-to-moderate seismic zones are often designed only for gravity loads in accordance with the non-seismic detailing provisions. Deficient detailing of columns and beam-column joints can lead to unpredictable brittle failures even under moderate earthquakes. Therefore, a reliable estimate of structural response is required for the seismic evaluation of these structures. For this purpose, analytical models for both interior and exterior slab-beam-column subassemblages and for a 1/3 scale model frame were implemented into the nonlinear finite element platform OpenSees. Comparison between the analytical results and experimental data available in the literature is carried out using nonlinear pushover analyses and nonlinear time history analysis for the subassemblages and the model frame, respectively. Furthermore, the seismic fragility assessment of reinforced concrete buildings is performed on a set of non-ductile frames using nonlinear time history analyses. The fragility curves, which are developed for various damage states for the maximum interstory drift ratio are characterized in terms of peak ground acceleration and spectral acceleration using a suite of ground motions representative of the seismic hazard in the region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When gas sample is continuously drawn from the cylinder of an internal combustion engine, the sample that appears at the end of the sampling system corresponds to the in-cylinder content sometime ago because of the finite transit time which is a function of the cylinder pressure history. This variable delay causes a dispersion of the sample signal and makes the interpretation of the signal difficult An unsteady flow analysis of a typical sampling system was carried out for selected engine loads and speeds. For typical engine operation, a window in which the delay is approximately constant may be found. This window gets smaller with increase in engine speed, with decrease in load, and with the increase in exit pressure of the sampling system.