53 resultados para embedded linux, ISO 14443


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The usage of semiconductor nanostructures is highly promising for boosting the energy conversion efficiency in photovoltaics technology, but still some of the underlying mechanisms are not well understood at the nanoscale length. Ge quantum dots (QDs) should have a larger absorption and a more efficient quantum confinement effect than Si ones, thus they are good candidate for third-generation solar cells. In this work, Ge QDs embedded in silica matrix have been synthesized through magnetron sputtering deposition and annealing up to 800°C. The thermal evolution of the QD size (2 to 10 nm) has been followed by transmission electron microscopy and X-ray diffraction techniques, evidencing an Ostwald ripening mechanism with a concomitant amorphous-crystalline transition. The optical absorption of Ge nanoclusters has been measured by spectrophotometry analyses, evidencing an optical bandgap of 1.6 eV, unexpectedly independent of the QDs size or of the solid phase (amorphous or crystalline). A simple modeling, based on the Tauc law, shows that the photon absorption has a much larger extent in smaller Ge QDs, being related to the surface extent rather than to the volume. These data are presented and discussed also considering the outcomes for application of Ge nanostructures in photovoltaics.PACS: 81.07.Ta; 78.67.Hc; 68.65.-k.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The photon absorption in Si quantum dots (QDs) embedded in SiO2 has been systematically investigated by varying several parameters of the QD synthesis. Plasma-enhanced chemical vapor deposition (PECVD) or magnetron cosputtering (MS) have been used to deposit, upon quartz substrates, single layer, or multilayer structures of Si-rich- SiO2 (SRO) with different Si content (43-46 at. %). SRO samples have been annealed for 1 h in the 450-1250 °C range and characterized by optical absorption measurements, photoluminescence analysis, Rutherford backscattering spectrometry and x-ray Photoelectron Spectroscopy. After annealing up to 900 °C SRO films grown by MS show a higher absorption coefficient and a lower optical bandgap (∼2.0 eV) in comparison with that of PECVD samples, due to the lower density of Si-Si bonds and to the presence of nitrogen in PECVD materials. By increasing the Si content a reduction in the optical bandgap has been recorded, pointing out the role of Si-Si bonds density in the absorption process in small amorphous Si QDs. Both the photon absorption probability and energy threshold in amorphous Si QDs are higher than in bulk amorphous Si, evidencing a quantum confinement effect. For temperatures higher than 900 °C both the materials show an increase in the optical bandgap due to the amorphous-crystalline transition of the Si QDs. Fixed the SRO stoichiometry, no difference in the optical bandgap trend of multilayer or single layer structures is evidenced. These data can be profitably used to better implement Si QDs for future PV technologies. © 2009 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dynamism and uncertainty are real challenges for present day manufacturing enterprises (MEs). Reasons include: an increasing demand for customisation, reduced time to market, shortened product life cycles and globalisation. MEs can reduce competitive pressure by becoming reconfigurable and change-capable. However, modern manufacturing philosophies, including agile and lean, must complement the application of reconfigurable manufacturing paradigms. Choosing and applying the best philosophies and techniques is very difficult as most MEs deploy complex and unique configurations of processes and resource systems, and seek economies of scope and scale in respect of changing and distinctive product flows. It follows that systematic methods of achieving model driven reconfiguration and interoperation of component based manufacturing systems are required to design, engineer and change future MEs. This thesis, titled Enhanced Integrated Modelling Approach to Reconfiguring Manufacturing Enterprises , introduces the development and prototyping a model-driven environment for the design, engineering, optimisation and control of the reconfiguration of MEs with an embedded capability to handle various types of change. The thesis describes a novel systematic approach, namely enhanced integrated modelling approach (EIMA), in which coherent sets of integrated models are created that facilitates the engineering of MEs especially their production planning and control (PPC) systems. The developed environment supports the engineering of common types of strategic, tactical and operational processes found in many MEs. The EIMA is centred on the ISO standardised CIMOSA process modelling approach. Early study led to the development of simulation models during which various CIMOSA shortcomings were observed, especially in its support for aspects of ME dynamism. A need was raised to structure and create semantically enriched models hence forming an enhanced integrated modelling environment. The thesis also presents three industrial case examples: (1) Ford Motor Company; (2) Bradgate Furniture Manufacturing Company; and (3) ACM Bearings Company. In order to understand the system prior to realisation of any PPC strategy, multiple process segments of any target organisation need to be modelled. Coherent multi-perspective case study models are presented that have facilitated process reengineering and associated resource system configuration. Such models have a capability to enable PPC decision making processes in support of the reconfiguration of MEs. During these case studies, capabilities of a number of software tools were exploited such as Arena®, Simul8®, Plant Simulation®, MS Visio®, and MS Excel®. Case study results demonstrated effectiveness of the concepts related to the EIMA. The research has resulted in new contributions to knowledge in terms of new understandings, concepts and methods in following ways: (1) a structured model driven integrated approach to the design, optimisation and control of future reconfiguration of MEs. The EIMA is an enriched and generic process modelling approach with capability to represent both static and dynamic aspects of an ME; and (2) example application cases showing benefits in terms of reduction in lead time, cost and resource load and in terms of improved responsiveness of processes and resource systems with a special focus on PPC; (3) identification and industrial application of a new key performance indicator (KPI) known as P3C the measuring and monitoring of which can aid in enhancing reconfigurability and responsiveness of MEs; and (4) an enriched modelling concept framework (E-MUNE) to capture requirements of static and dynamic aspects of MEs where the conceptual framework has the capability to be extended and modified according to the requirements. The thesis outlines key areas outlining a need for future research into integrated modelling approaches, interoperation and updating mechanisms of partial models in support of the reconfiguration of MEs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The discusser read with interest the paper by Diakoumi & Powrie (2013) proposing an interesting method for the analysis of propped flexible retaining walls based on the mobilisation of active and passive pressures on the wall due to movement of wall segments. An assumed deformation mechanism within the soil is used to estimate the strain associated with rotation of a particular wall segment. This mechanism is then superposed for each wall segment, the resulting earth pressures are calculated; the equality between the wall bending moments implied by equilibrium and those required to achieve the appropriate bending of the wall is used to calculate the rotation of each segment. Although the method of analysis provides insight into the conservatism of conventional design calculations for different wall flexibilities, there are two aspects of the paper which provoke further discussion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A multi-channel complex machine tool (MCCM) is a versatile machining system equipped with more than two spindles and turrets for both turning and milling operations. Despite the potential of such a tool, the value of the hardware is largely dependent on how the machine tools are effectively programmed for machining. In this paper we consider a shop-floor programming system based on ISO 14649 (called e-CAM), the international standard for the interface between computer-aided manufacture (CAM) and computer numerical control (CNC). To be deployed in practical industrial usage a great deal of research has to be carried out. In this paper we present: 1) Design consideration for an e-CAM system, 2) The architecture design of e-CAM, 3) Major algorithms to fulfill the modules defined in the architecture, and 4) Implementation details.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

© 2014 by ASME. This paper, the second of two parts, presents a new setup for the two-stage two-spool facility located at the Institute for Thermal Turbomachinery and Machine Dynamics (ITTM) of Graz University of Technology. The rig was designed to reproduce the flow behavior of a transonic turbine followed by a counter-rotating low pressure stage such as those in high bypass aero-engines. The meridional flow path of the machine is characterized by a diffusing S-shaped duct between the two rotors. The role of wide chord vanes placed into the mid turbine frame is to lead the flow towards the low pressure (LP) rotor with appropriate swirl. Experimental and numerical investigations performed on this setup showed that the wide chord struts induce large wakes and extended secondary flows at the LP inlet flow. Moreover, large deterministic fluctuations of pressure, which may cause noise and blade vibrations, were observed downstream of the LP rotor. In order to minimize secondary vortices and to damp the unsteady interactions, the mid turbine frame was redesigned to locate two zero-lift splitters into each vane passage. While in the first part of the paper the design process of the splitters and the time-averaged flow field were presented, in this second part the measurements performed by means of a fast response probe will support the explanation of the time-resolved field. The discussion will focus on the comparison between the baseline case (without splitters) and the embedded design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

© 2014 by ASME. The paper presents a new setup for the two-stage two-spool facility located at the Institute for Thermal Turbomachinery and Machine Dynamics (ITTM) of Graz University of Technology. The rig was designed in order to simulate the flow behavior of a transonic turbine followed by a counter-rotating low pressure (LP) stage like the spools of a modern high bypass aeroengine. The meridional flow path of the machine is characterized by a diffusing S-shaped duct between the two rotors. The role of turning struts placed into the mid turbine frame is to lead the flow towards the LP rotor with appropriate swirl. Experimental and numerical investigations performed on the setup over the last years, which were used as baseline for this paper, showed that wide chord vanes induce large wakes and extended secondary flows at the LP rotor inlet flow. Moreover, unsteady interactions between the two turbines were observed downstream of the LP rotor. In order to increase the uniformity and to decrease the unsteady content of the flow at the inlet of the LP rotor, the mid turbine frame was redesigned with two zero-lifting splitters embedded into the strut passage. In this first part of the paper the design process of the splitters and its critical points are presented, while the time-averaged field is discussed by means of five-hole probe measurements and oil flow visualizations. The comparison between the baseline case and the embedded design configuration shows that the new design is able to reduce the flow gradients downstream of the turning struts, providing a more suitable inlet condition for the low pressure rotor. The improvement in the flow field uniformity is also observed downstream of the turbine and it is, consequently, reflected in an enhancement of the LP turbine performance. In the second part of this paper the influence of the embedded design on the time-resolved field is investigated.