78 resultados para electrochemical calculation
Resumo:
The Silent Aircraft airframe has a flying wing design with a large wing planform and a propulsion system embedded in the rear of the airframe with intake on the upper surface of the wing. In the present paper, boundary element calculations are presented to evaluate acoustic shielding at low frequencies. Besides the three-dimensional geometry of the Silent Aircraft airframe, a few two-dimensional problems are considered that provide some physical insight into the shielding calculations. Mean flow refraction effects due to forward flight motion are accounted for by a simple time transformation that decouples the mean-flow and acoustic-field calculations. It is shown that significant amount of shielding can be obtained in the shadow region where there is no direct line of sight between the source and observer. The boundary element solutions are restricted to low frequencies. We have used a simple physically-based model to extend the solution to higher frequencies. Based on this model, using a monopole acoustic source, we predict at least an 18 dBA reduction in the overall sound pressure level of forward-propagating fan noise because of shielding.
Calculation of semiconductor band structures and defects by the screened exchange density functional
Resumo:
The frequency range of interest for ground vibration from underground urban railways is approximately 20 to 100 Hz. For typical soils, the wavelengths of ground vibration in this frequency range are of the order of the spacing of train axles, the tunnel diameter and the distance from the tunnel to nearby building foundations. For accurate modelling, the interactions between these entities therefore have to be taken into account. This paper describes an analytical three-dimensional model for the dynamics of a deep underground railway tunnel of circular cross-section. The tunnel is conceptualised as an infinitely long, thin cylindrical shell surrounded by soil of infinite radial extent. The soil is modelled by means of the wave equations for an elastic continuum. The coupled problem is solved in the frequency domain by Fourier decomposition into ring modes circumferentially and a Fourier transform into the wavenumber domain longitudinally. Numerical results for the tunnel and soil responses due to a normal point load applied to the tunnel invert are presented. The tunnel model is suitable for use in combination with track models to calculate the ground vibration due to excitation by running trains and to evaluate different track configurations. © 2006 Elsevier Ltd. All rights reserved.