47 resultados para drift


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The optimization of a near-circular low-Earth-orbit multispacecraft refueling problem is studied. The refueling sequence, service time, and orbital transfer time are used as design variables, whereas the mean mission completion time and mean propellant consumed by orbital maneuvers are used as design objectives. The J2 term of the Earth's nonspherical gravity perturbation and the constraints of rendezvous time windows are taken into account. A hybridencoding genetic algorithm, which uses normal fitness assignment to find the minimum mean propellant-cost solution and fitness assignment based on the concept of Pareto-optimality to find multi-objective optimal solutions, is presented. The proposed approach is demonstrated for a typical multispacecraft refueling problem. The results show that the proposed approach is effective, and that the J2 perturbation and the time-window constraints have considerable influences on the optimization results. For the problems in which the J2 perturbation is not accounted for, the optimal refueling order can be simply determined as a sequential order or as the order only based on orbitalplane differences. In contrast, for the problems that do consider the J2 perturbation, the optimal solutions obtained have a variety of refueling orders and use the drift of nodes effectively to reduce the propellant cost for eliminating orbital-plane differences. © 2013 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Traditional approaches to upper body pose estimation using monocular vision rely on complex body models and a large variety of geometric constraints. We argue that this is not ideal and somewhat inelegant as it results in large processing burdens, and instead attempt to incorporate these constraints through priors obtained directly from training data. A prior distribution covering the probability of a human pose occurring is used to incorporate likely human poses. This distribution is obtained offline, by fitting a Gaussian mixture model to a large dataset of recorded human body poses, tracked using a Kinect sensor. We combine this prior information with a random walk transition model to obtain an upper body model, suitable for use within a recursive Bayesian filtering framework. Our model can be viewed as a mixture of discrete Ornstein-Uhlenbeck processes, in that states behave as random walks, but drift towards a set of typically observed poses. This model is combined with measurements of the human head and hand positions, using recursive Bayesian estimation to incorporate temporal information. Measurements are obtained using face detection and a simple skin colour hand detector, trained using the detected face. The suggested model is designed with analytical tractability in mind and we show that the pose tracking can be Rao-Blackwellised using the mixture Kalman filter, allowing for computational efficiency while still incorporating bio-mechanical properties of the upper body. In addition, the use of the proposed upper body model allows reliable three-dimensional pose estimates to be obtained indirectly for a number of joints that are often difficult to detect using traditional object recognition strategies. Comparisons with Kinect sensor results and the state of the art in 2D pose estimation highlight the efficacy of the proposed approach.