49 resultados para creative drive
Resumo:
High-power converters usually need longer dead-times than their lower-power counterparts and a lower switching frequency. Also due to the complicated assembly layout and severe variations in parasitics, in practice the conventional dead-time specific adjustment or compensation for high-power converters is less effective, and usually this process is time-consuming and bespoke. For general applications, minimising or eliminating dead-time in the gate drive technology is a desirable solution. With the growing acceptance of power electronics building blocks (PEBB) and intelligent power modules (IPM), gate drives with intelligent functions are in demand. Smart functions including dead time elimination/minimisation can improve modularity, flexibility and reliability. In this paper, a dead-time minimisation using Active Voltage Control (AVC) gate drive is presented. © 2012 IEEE.
Resumo:
The ocean represents a huge energy reservoir since waves can be exploited to generate clean and renewable electricity; however, a hybrid energy storage system is needed to smooth the fluctuation. In this paper a hybrid energy storage system using a superconducting magnetic energy system (SMES) and Li-ion battery is proposed. The SMES is designed using Yttrium Barium Copper Oxide (YBCO) tapes, which store 60 kJ electrical energy. The magnet component of the SMES is designed using global optimization algorithm. Mechanical stress, coupled with electromagnetic field, is calculated using COMSOL and Matlab. A cooling system is presented and a suitable refrigerator is chosen to maintain a cold working temperature taking into account four heat sources. Then a microgrid system of direct drive linear wave energy converters is designed. The interface circuit connecting the generator and storage system is given. The result reveals that the fluctuated power from direct drive linear wave energy converters is smoothed by the hybrid energy storage system. The maximum power of the wave energy converter is 10 kW. © 2012 IEEE.