53 resultados para automobile racing
Resumo:
At medium to high frequencies the dynamic response of a built-up engineering system, such as an automobile, can be sensitive to small random manufacturing imperfections. Ideally the statistics of the system response in the presence of these uncertainties should be computed at the design stage, but in practice this is an extremely difficult task. In this paper a brief review of the methods available for the analysis of systems with uncertainty is presented, and attention is then focused on two particular "non- parametric" methods: statistical energy analysis (SEA), and the hybrid method. The main governing equations are presented, and a number of example applications are considered, ranging from academic benchmark studies to industrial design studies. © 2009 IOP Publishing Ltd.
Resumo:
A mathematical model is developed to predict the energy consumption of a heavy vehicle. It includes the important factors of heavy-vehicle energy consumption, namely engine and drivetrain performances, losses due to accessories, aerodynamic drag, rolling resistance, road gradients, and driver behaviour. Novel low-cost testing methods were developed to determine engine and drivetrain characteristics. A simple drive cycle was used to validate the model. The model is able to predict the fuel use for a 371 tractor-semitrailer vehicle over a 4 km drive cycle within 1 per cent. This paper demonstrates that accurate and reliable vehicle benchmarking and model parameter measurement can be achieved without expensive equipment overheads, e.g. engine and chassis dynamometers.
Resumo:
This paper develops a path-following steering control strategy for an articulated heavy goods vehicle. The controller steers the axles of the semi-trailer so that its rear end follows the path of the fifth wheel coupling: for all paths and all speeds. This substantially improves low-speed manoeuvrability, off-tracking, and tyre scrubbing (wear). It also increases high-speed stability, reduces 'rearward amplification', and reduces the propensity to roll over in high-speed transient manoeuvres. The design of a novel experimental heavy goods vehicle with three independent hydraulically actuated steering axles is presented. The path-following controller is tested on the experimental vehicle, at low and high speeds. The field test results are compared with vehicle simulations and found to agree well. The benefits of this steering control approach are quantified. In a low-speed 'roundabout' manoeuvre, low-speed off-tracking was reduced by 73 per cent, from 4.25 m for a conventional vehicle to 1.15 m for the experimental vehicle; swept-path width was reduced by 2 m (28 per cent); peak scrubbing tyre forces were reduced by 83 per cent; and entry tail-swing was eliminated. In an 80 km/h lane-change manoeuvre, peak path error for the experimental vehicle was 33 per cent less than for the conventional vehicle, and rearward amplification of the trailer was 35 per cent less. Increasing the bandwidth of the steering actuators improved the high-speed dynamic performance of the vehicle, but at the expense of increased oil flow.
Resumo:
A receding horizon steering controller is presented, capable of pushing an oversteering nonlinear vehicle model to its handling limit while travelling at constant forward speed. The controller is able to optimise the vehicle path, using a computationally efficient and robust technique, so that the vehicle progression along a track is maximised as a function of time. The resultant method forms part of the solution to the motor racing objective of minimising lap time. © 2011 AACC American Automatic Control Council.
An investigation into the information exchange between a consultant and client company: a case study
Resumo:
This report deals with collaborations of engineering consultants and clients in the automobile industry.
In these relationships three main challenges have been identified which have to be addressed by the consultancies. Therefore, the research takes the viewpoint of the consulting side. The challenges are
(i) the appropriate project goal definition;
(ii) achieving client satisfaction; and
(iii) dealing with international clients.
An investigation of such a relationship carried out on a case study shows that improvements can be achieved through communication support. The ways to do that are proposed.
Resumo:
Work presented in this paper studies the potential of employing inerters -a novel mechanical device used successfully in racing cars- in active suspension configurations with the aim to enhance railway vehicle system performance. The particular element of research in this paper concerns railway wheelset lateral stability control. Controlled torques are applied to the wheelsets using the concept of absolute stiffness. The effects of a reduced set of arbitrary passive structures using springs, dampers and inerters integrated to the active solution are discussed. A multi-objective optimisation problem is defined for tuning the parameters of the proposed configurations. Finally, time domain simulations are assessed for the railway vehicle while negotiating a curved track. A simplification of the design problem for stability is attained with the integration of inerters to the active solutions. © 2012 IEEE.