78 resultados para airborne sensing


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper shows that film bulk acoustic resonator (FBAR) arrays can be very useful sensors either to detect physical parameters such as temperature and pressure directly or to detect bio-chemicals with extremely high sensitivities by incorporating a chemisorption layer or bio-probe molecules. Furthermore, it also shows that surface acoustic wave devices can be integrated with a FBAR sensor array on the same piezoelectric substrate as the microfluidics systems to perform transportation and mixing of biosamples etc. demonstrating the possibility to fabricate integrated lab-on-a-chip detection systems, in which all the actuators and sensors are operated by acoustic wave devices. This makes the detection system simple, low cost and easy to operate and hence has great commercial potential. © 2011 Inderscience Enterprises Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A voltage sensing buck converter-based technique for maximum solar power delivery to a load is presented. While retaining the features and advantages of the incremental conductance algorithm, this technique is more desirable because of single sensor use. The technique operates by maximising power at the buck converter output instead of the input.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin film bulk acoustic wave resonator (FBAR) devices supporting simultaneously multiple resonance modes have been designed for gravimetric sensing. The mechanism for dual-mode generation within a single device has been discussed, and theoretical calculations based on finite element analysis allowed the fabrication of FBARs whose resonance modes have opposite reactions to temperature changes; one of the modes exhibiting a positive frequency shift for a rise of temperature whilst the other mode exhibits a negative shift. Both modes exhibit negative frequency shift for a mass load and hence by monitoring simultaneously both modes it is possible to distinguish whether a change in the resonance frequency is due to a mass load or temperature variation (or a combination of both), avoiding false positive/negative responses in gravimetric sensing without the need of additional reference devices or complex electronics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin film bulk acoustic wave resonator (FBAR) devices supporting simultaneously multiple resonance modes have been designed for gravimetric sensing. The mechanism for dual-mode generation within a single device has been discussed, and theoretical calculations based on finite element analysis allowed the fabrication of FBARs whose resonance modes have opposite reactions to temperature changes; one of the modes exhibiting a positive frequency shift for a rise of temperature whilst the other mode exhibits a negative shift. Both modes exhibit negative frequency shift for a mass load and hence by monitoring simultaneously both modes it is possible to distinguish whether a change in the resonance frequency is due to a mass load or temperature variation (or a combination of both), avoiding false positive/negative responses in gravimetric sensing without the need of additional reference devices or complex electronics. © 2012 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Construction industry is a sector that is renowned for the slow uptake of new technologies. This is usually due to the conservative nature of this sector that relies heavily on tried and tested and successful old business practices. However, there is an eagerness in this industry to adopt Building Information Modelling (BIM) technologies to capture and record accurate information about a building project. But vast amounts of information and knowledge about the construction process is typically hidden within informal social interactions that take place in the work environment. In this paper we present a vision where smartphones and tablet devices carried by construction workers are used to capture the interaction and communication between workers in the field. Informal chats about decisions taken in the field, impromptu formation of teams, identification of key persons for certain tasks, and tracking the flow of information across the project community, are some pieces of information that could be captured by employing social sensing in the field. This information can not only be used during the construction to improve the site processes but it can also be exploited by the end user during maintenance of the building. We highlight the challenges that need to be overcome for this mobile and social sensing system to become a reality. © 2012 ACM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As-built models have been proven useful in many project-related applications, such as progress monitoring and quality control. However, they are not widely produced in most projects because a lot of effort is still necessary to manually convert remote sensing data from photogrammetry or laser scanning to an as-built model. In order to automate the generation of as-built models, the first and fundamental step is to automatically recognize infrastructure-related elements from the remote sensing data. This paper outlines a framework for creating visual pattern recognition models that can automate the recognition of infrastructure-related elements based on their visual features. The framework starts with identifying the visual characteristics of infrastructure element types and numerically representing them using image analysis tools. The derived representations, along with their relative topology, are then used to form element visual pattern recognition (VPR) models. So far, the VPR models of four infrastructure-related elements have been created using the framework. The high recognition performance of these models validates the effectiveness of the framework in recognizing infrastructure-related elements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Air pockets, one kind of concrete surface defects, are often created on formed concrete surfaces during concrete construction. Their existence undermines the desired appearance and visual uniformity of architectural concrete. Therefore, measuring the impact of air pockets on the concrete surface in the form of air pockets is vital in assessing the quality of architectural concrete. Traditionally, such measurements are mainly based on in-situ manual inspections, the results of which are subjective and heavily dependent on the inspectors’ own criteria and experience. Often, inspectors may make different assessments even when inspecting the same concrete surface. In addition, the need for experienced inspectors costs owners or general contractors more in inspection fees. To alleviate these problems, this paper presents a methodology that can measure air pockets quantitatively and automatically. In order to achieve this goal, a high contrast, scaled image of a concrete surface is acquired from a fixed distance range and then a spot filter is used to accurately detect air pockets with the help of an image pyramid. The properties of air pockets (the number, the size, and the occupation area of air pockets) are subsequently calculated. These properties are used to quantify the impact of air pockets on the architectural concrete surface. The methodology is implemented in a C++ based prototype and tested on a database of concrete surface images. Comparisons with manual tests validated its measuring accuracy. As a result, the methodology presented in this paper can increase the reliability of concrete surface quality assessment

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As-built models have been proven useful in many project-related applications, such as progress monitoring and quality control. However, they are not widely produced in most projects because a lot of effort is still necessary to manually convert remote sensing data from photogrammetry or laser scanning to an as-built model. In order to automate the generation of as-built models, the first and fundamental step is to automatically recognize infrastructure-related elements from the remote sensing data. This paper outlines a framework for creating visual pattern recognition models that can automate the recognition of infrastructure-related elements based on their visual features. The framework starts with identifying the visual characteristics of infrastructure element types and numerically representing them using image analysis tools. The derived representations, along with their relative topology, are then used to form element visual pattern recognition (VPR) models. So far, the VPR models of four infrastructure-related elements have been created using the framework. The high recognition performance of these models validates the effectiveness of the framework in recognizing infrastructure-related elements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study was to identify challenges in civil and environmental engineering that can potentially be solved using data sensing and analysis research. The challenges were recognized through extensive literature review in all disciplines of civil and environmental engineering. The literature review included journal articles, reports, expert interviews, and magazine articles. The challenges were ranked by comparing their impact on cost, time, quality, environment and safety. The result of this literature review includes challenges such as improving construction safety and productivity, improving roof safety, reducing building energy consumption, solving traffic congestion, managing groundwater, mapping and monitoring the underground, estimating sea conditions, and solving soil erosion problems. These challenges suggest areas where researchers can apply data sensing and analysis research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A diverse group of experts proposed the 9 grand challenges outlined in this booklet. This expert task force was assembled by the ASCE TCCIT Data Sensing and Analysis (DSA) Committee and endorsed by the TRB AFH10(1) Construction IT joint subcommittee at the request of their membership. The task force did not rank the challenges selected, nor did it endorse particular approaches to meeting them. Rather than attempt to include every important goal for data sensing and analysis, the panel chose opportunities that were both achievable and sustainable to help people and the planet thrive. The panel’s conclusions were reviewed by several subject-matter experts. The DSA is offering an opportunity to comment on the challenges by contacting the task force chair via email at becerik@usc.edu.