71 resultados para ZnO Microflowers
Resumo:
The fabrication of high frequency acoustic wave devices requires thedevelopment of thin films of piezoelectric materials with improved morphologicaland electro-acoustical properties. In particular, the crystalline orientationof the films, surface morphology, film stress and electrical resistivity are keyissues for the piezoelectric response. In the work reported here, ZnO thinfilms were deposited at high rates (>50 nm/min) using a novel process knownas the High Target Utilisation Sputtering (HiTUS). The films deposited possessexcellent crystallographic orientation, high resistivity (>109ωm), and exhibit surface roughness and film stress one order of magnitudelower than films grown with standard magnetron sputtering. The electromechanicalcoupling coefficient of the films, kT, was precisely calculated byimplementing the resonant spectrum method, and was found to be at least 6%higher than any previously reported kT of magnetron sputtered filmsto the Authors' knowledge. The low film stress of the film is deemed as one ofthe most important factors responsible for the high k T valueobtained. © 2010 IEEE.
Resumo:
Film bulk acoustic resonator (FBAR) devices with carbon nanotube (CNT) electrodes directly grown on a ZnO film by thermal chemical vapor deposition have been fabricated. CNT electrodes possess a very low density and high acoustic impedance, which reduces the intrinsic mass loading effect resulting from the electrodes' weight and better confines the longitudinal acoustic standing waves inside the resonator, in turn providing a resonator with a higher quality factor. The influence of the CNTs on the frequency response of the FBAR devices was studied by comparing two identical sets of devices; one set comprised FBARs fabricated with chromium/ gold bilayer electrodes, and the second set comprised FBARs fabricated with CNT electrodes. It was found that the CNTs had a significant effect on attenuating traveling waves at the surface of the FBARs' membranes because of their high elastic stiffness. Three-dimensional finite element analysis of the devices fabricated was carried out, and the numerical simulations were consistent with the experimental results obtained. © 2011 IEEE.
Guided propagation of surface acoustic waves and piezoelectric field enhancement in ZnO/GaAs systems
Resumo:
The characteristics and dispersion of the distinct surface acoustic waves (SAWs) propagating in ZnO/GaAs heterostructures have been studied experimentally and theoretically. Besides the Rayleigh mode, strong Sezawa modes, which propagate confined in the overlayer, arise due to the smaller sound velocity in ZnO than in the substrate. The design parameters of the structure providing the strongest piezoelectric field at a given depth within the layered system for the different modes have been determined. The piezoelectric field of the Rayleigh mode is shown to be more than 10 times stronger at the interface region of the tailored ZnO/GaAs structure than at the surface region of the bulk GaAs, whereas the same comparison for the first Sezawa mode yields a factor of 2. This enhancement, together with the capacity of selecting waves with different piezoelectric and strain field depth profiles, will facilitate the development of SAW-modulated optoelectronic applications in GaAs-based systems. © 2011 American Institute of Physics.
Resumo:
This paper describes a new strategy to make a full solid-state, flexible, dye-sensitized solar cell (DSSC) based on novel ionic liquid gel, organic dye, ZnO nanoparticles and carbon nanotube (CNT) thin film stamped onto a polyethylene terephthalate (PET) substrate. The CNTs serve both as the charge collector and as scaffolds for the growth of ZnO nanoparticles, where the black dye molecules are anchored. It opens up the possibility of developing a continuous roll to roll processing for THE mass production of DSSCs.
Resumo:
Surface acoustic wave (SAW) devices with 64 μm wavelength were fabricated on a zinc oxide (ZnO) film deposited on top of an ultra-smooth nanocrystalline diamond (UNCD) layer. The smooth surface of the UNCD film allowed the growth of the ZnO film with excellent c-axis orientation and low surface roughness, suitable for SAW fabrication, and could restrain the wave from significantly dissipating into the substrate. The frequency response of the fabricated devices was characterized and a Rayleigh mode was observed at ∼65.4 MHz. This mode was utilised to demonstrate that the ZnO/UNCD SAW device can be successfully used for microfluidic applications. Streaming, pumping, and jetting using microdroplets of 0.5 and 20 μl were achieved and characterized under different powers applied to the SAW device, focusing more on the jetting behaviors induced by the ZnO SAW.
Resumo:
The probe tip is pivotal in determining the resolution and nature of features observed in the Scanning Tunnelling Microscope (STM). We have augmented a conventional Pt/Ir metallic tip with a hydrothermally grown ZnO nanowire (NW). Atomic resolution imaging of graphite is attained. Current-voltage (IV) characteristics demonstrate an asymmetry stemming from the unintentional n-type doping of the ZnO NW, whereas the expected Schottky barrier at the ZnO-Pt/Ir interface is shown to have negligible effect. Moreover the photoconductivity of the system is investigated, paving the way towards a photodetector capable of atomic resolution.
Resumo:
We investigated the UV photoconductivity characteristics of ZnO nanowire field effect transistors (FETs) irradiated by proton beams. After proton beam irradiation (using a beam energy of 10 MeV and a fluence of 10 12 cm -2), the drain current and carrier density in the ZnO nanowire FETs decreased, and the threshold voltage shifted to the positive gate bias direction due to the creation of interface traps at the SiO 2/ZnO nanowire interface by the proton beam. The interface traps produced a higher surface barrier potential and a larger depletion region at the ZnO nanowire surface, affecting the photoconductivity and its decay time. The UV photoconductivity of the proton-irradiated ZnO nanowire FETs was higher and more prolonged than that of the pristine ZnO nanowire FETs. The results extend our understanding of the UV photoconductivity characteristics of ZnO nanowire devices and other materials when irradiated with highly energetic particles. © 2012 Elsevier B.V. All rights reserved.
Resumo:
ZnO thin film bulk acoustic resonators (FBARs) with resonant frequency of ∼1.5 GHz have been fabricated to function as an odorant biosensor. Physical adsorption of an odorant binding protein (AaegOBP22 from Aedes aegypti) resulted in frequency down shift. N,N-diethyl-meta-toluamide (DEET) has been selected as a ligand to the odorant binding protein (OBP). Alternate exposure of the bare FBARs to nitrogen flow with and without DEET vapor did not cause any noticeable frequency change. However, frequency drop was detected when exposing the OBP loaded FBAR sensors to the nitrogen flow containing DEET vapor against nitrogen flow alone (control) and the extent of frequency shift was proportional to the amount of the protein immobilized on the FBAR surface, indicating a linear response to DEET binding. These findings demonstrate the potential of binding protein functionalized FBARs as odorant biosensors. © 2012 Elsevier B.V. All rights reserved.
Resumo:
Acoustic wave devices were fabricated incorporating ZnO films deposited using both a standard rf magnetronand a novel High Target Utilisation (HiTUS) Sputtering System. Our results demonstrated the feasibility of using a single SAW-based actuation mechanism for both microfluidics and sensing. To further improve the sensitivity of our bio-sensors we have also investigated the use of Thin Film Bulk Acoustic Resonators.
Resumo:
In this letter we report a facile one-pot synthesis of intercalated ZnO particles for inexpensive, low-temperature solution processed dye-sensitised solar cells. High interconnectivity facilitates enhanced charge transfer between the ZnO nanoparticles and a consequent enhancement in cell efficiency. ZnO thin films were formed from a wide range of nanoparticle diameters which simultaneously increased optical scattering whilst enhancing dye loading. A possible growth mechanism was proposed for the synthesis of ZnO nanoparticles. The intercalated ZnO nanoparticle thin films were integrated into the photoanodes of dye-sensitised solar cells which showed an increase in performance of 37% compared to structurally equivalent cells employing ZnO nanowires. © 2012 Elsevier B.V.