273 resultados para Underwater acoustics.
Resumo:
We develop methods for performing filtering and smoothing in non-linear non-Gaussian dynamical models. The methods rely on a particle cloud representation of the filtering distribution which evolves through time using importance sampling and resampling ideas. In particular, novel techniques are presented for generation of random realisations from the joint smoothing distribution and for MAP estimation of the state sequence. Realisations of the smoothing distribution are generated in a forward-backward procedure, while the MAP estimation procedure can be performed in a single forward pass of the Viterbi algorithm applied to a discretised version of the state space. An application to spectral estimation for time-varying autoregressions is described.
Resumo:
In this paper we address the problem of the separation and recovery of convolutively mixed autoregressive processes in a Bayesian framework. Solving this problem requires the ability to solve integration and/or optimization problems of complicated posterior distributions. We thus propose efficient stochastic algorithms based on Markov chain Monte Carlo (MCMC) methods. We present three algorithms. The first one is a classical Gibbs sampler that generates samples from the posterior distribution. The two other algorithms are stochastic optimization algorithms that allow to optimize either the marginal distribution of the sources, or the marginal distribution of the parameters of the sources and mixing filters, conditional upon the observation. Simulations are presented.
Resumo:
Statistical model-based methods are presented for the reconstruction of autocorrelated signals in impulsive plus continuous noise environments. Signals are modelled as autoregressive and noise sources as discrete and continuous mixtures of Gaussians, allowing for robustness in highly impulsive and non-Gaussian environments. Markov Chain Monte Carlo methods are used for reconstruction of the corrupted waveforms within a Bayesian probabilistic framework and results are presented for contaminated voice and audio signals.
Resumo:
In this paper methods are developed for enhancement and analysis of autoregressive moving average (ARMA) signals observed in additive noise which can be represented as mixtures of heavy-tailed non-Gaussian sources and a Gaussian background component. Such models find application in systems such as atmospheric communications channels or early sound recordings which are prone to intermittent impulse noise. Markov Chain Monte Carlo (MCMC) simulation techniques are applied to the joint problem of signal extraction, model parameter estimation and detection of impulses within a fully Bayesian framework. The algorithms require only simple linear iterations for all of the unknowns, including the MA parameters, which is in contrast with existing MCMC methods for analysis of noise-free ARMA models. The methods are illustrated using synthetic data and noise-degraded sound recordings.
Resumo:
We present a stochastic simulation technique for subset selection in time series models, based on the use of indicator variables with the Gibbs sampler within a hierarchical Bayesian framework. As an example, the method is applied to the selection of subset linear AR models, in which only significant lags are included. Joint sampling of the indicators and parameters is found to speed convergence. We discuss the possibility of model mixing where the model is not well determined by the data, and the extension of the approach to include non-linear model terms.
Resumo:
We present a statistical model-based approach to signal enhancement in the case of additive broadband noise. Because broadband noise is localised in neither time nor frequency, its removal is one of the most pervasive and difficult signal enhancement tasks. In order to improve perceived signal quality, we take advantage of human perception and define a best estimate of the original signal in terms of a cost function incorporating perceptual optimality criteria. We derive the resultant signal estimator and implement it in a short-time spectral attenuation framework. Audio examples, references, and further information may be found at http://www-sigproc.eng.cam.ac.uk/~pjw47.
Resumo:
This paper describes the development of the CU-HTK Mandarin Speech-To-Text (STT) system and assesses its performance as part of a transcription-translation pipeline which converts broadcast Mandarin audio into English text. Recent improvements to the STT system are described and these give Character Error Rate (CER) gains of 14.3% absolute for a Broadcast Conversation (BC) task and 5.1% absolute for a Broadcast News (BN) task. The output of these STT systems is then post-processed, so that it consists of sentence-like segments, and translated into English text using a Statistical Machine Translation (SMT) system. The performance of the transcription-translation pipeline is evaluated using the Translation Edit Rate (TER) and BLEU metrics. It is shown that improving both the STT system and the post-STT segmentations can lower the TER scores by up to 5.3% absolute and increase the BLEU scores by up to 2.7% absolute. © 2007 IEEE.
Resumo:
This paper discusses the development of the CU-HTK Mandarin Broadcast News (BN) transcription system. The Mandarin BN task includes a significant amount of English data. Hence techniques have been investigated to allow the same system to handle both Mandarin and English by augmenting the Mandarin training sets with English acoustic and language model training data. A range of acoustic models were built including models based on Gaussianised features, speaker adaptive training and feature-space MPE. A multi-branch system architecture is described in which multiple acoustic model types, alternate phone sets and segmentations can be used in a system combination framework to generate the final output. The final system shows state-of-the-art performance over a range of test sets. ©2006 British Crown Copyright.