56 resultados para Target Activities
Resumo:
The Masters programme in Engineering for Sustainable Development at Cambridge University explores a number of key themes, including dealing with: complexity, uncertainty, change, other disciplines, people, environmental limits, whole life costs, and trade-offs. This paper examines how these concepts are introduced and analyses the range of exercises and assignments which are designed to encourage students to test their own assumptions and abilities to develop competencies in these areas. Student performance against these tasks is discussed and student feedback is also presented, with a focus on how their awareness of the themes are met through a range of activities.
Resumo:
Purpose: The paper examines how a number of key themes are introduced in the Masters programme in Engineering for Sustainable Development at Cambridge University through student centred activities. These themes include dealing with complexity, uncertainty, change, other disciplines, people, environmental limits, whole life costs, and trade-offs. Design/methodology/approach: The range of exercises and assignments designed to encourage students to test their own assumptions and abilities to develop competencies in these areas are analysed by mapping the key themes onto the formal activities which all students undertake throughout the core MPhil programme. The paper reviews the range of these activities that are designed to help support the formal delivery of the taught programme. These include residential field courses, role plays, change challenges, games, systems thinking, multi criteria decision making, awareness of literature from other disciplines and consultancy projects. An axial coding approach to the analysis of routine feedback questionnaires drawn from recent years has been used to identify how student’s own awareness develops. Also results of two surveys are presented which tests the students’ perceptions about whether or not the course is providing learning environments to develop awareness and skills in these areas. Findings: Students generally perform well against these tasks with a significant feature being the mutual support they give to each other in their learning. The paper concludes that for students from an engineering background it is an holistic approach to delivering a new way of thinking through a combination of lectures, class activities, assignments, interactions between class members, and access to material elsewhere in the University that enables participants to develop their skills in each of the key themes. Originality /value: The paper provides a reflection on different pedagogical approaches to exploring key sustainable themes and reports students own perceptions of the value of these kinds of activities. Experiences are shared of running a range of diverse learning activities within a professional practice Masters programme.
Resumo:
In this paper, we present an expectation-maximisation (EM) algorithm for maximum likelihood estimation in multiple target models (MTT) with Gaussian linear state-space dynamics. We show that estimation of sufficient statistics for EM in a single Gaussian linear state-space model can be extended to the MTT case along with a Monte Carlo approximation for inference of unknown associations of targets. The stochastic approximation EM algorithm that we present here can be used along with any Monte Carlo method which has been developed for tracking in MTT models, such as Markov chain Monte Carlo and sequential Monte Carlo methods. We demonstrate the performance of the algorithm with a simulation. © 2012 ISIF (Intl Society of Information Fusi).
Resumo:
The Accelerator Driven Subcritical Reactor (ADSR) concept is based on the coupling of a particle accelerator to a subcritical reactor core by means of a neutron spallation target interface. This paper investigates the benefits of multiple spallation targets in ADSRs. The motivation behind this is, firstly, to improve the overall reliability of the accelerator-reactor system, and, secondly, to evaluate other potential advantages such as lower beam power requirements. The results show that a system containing two or three spallation targets, coupled to independent accelerators, offers better neutronic performance. This is demonstrated through the increased effective multiplication factor (keff) in the two- and three-target configurations and a more uniform neutron flux distribution. A multiple-target ADSR also proves effective in mitigating the impact of frequent beam interruptions, a pressing issue that needs to be addressed for the ADSR concept to advance. Assuming no simultaneous beam shutdowns, the two- and three-target configurations reduce the risk of fuel cladding failure due to thermal cyclic fatigue. © 2013 Elsevier B.V. All rights reserved.
Resumo:
This paper discusses user target intention recognition algorithms for pointing - clicking tasks to reduce users' pointing time and difficulty. Predicting targets by comparing the bearing angles to targets proposed as one of the first algorithms [1] is compared with a Kalman Filter prediction algorithm. Accuracy and sensitivity of prediction are used as performance criteria. The outcomes of a standard point and click experiment are used for performance comparison, collected from both able-bodied and impaired users. © 2013 Springer-Verlag Berlin Heidelberg.
Resumo:
It is widely acknowledged that ceramic armor experiences an unsteady penetration response: an impacting projectile may erode on the surface of a ceramic target without substantial penetration for a significant amount of time and then suddenly start to penetrate the target. Although known for more than four decades, this phenomenon, commonly referred to as dwell, remains largely unexplained. Here, we use scaled analog experiments with a low-speed water jet and a soft, translucent target material to investigate dwell. The transient target response, in terms of depth of penetration and impact force, is captured using a high-speed camera in combination with a piezoelectric force sensor. We observe the phenomenon of dwell using a soft (noncracking) target material. The results show that the penetration rate increases when the flow of the impacting water jet is reversed due to the deformation of the jet-target interface--this reversal is also associated with an increase in the force exerted by the jet on the target. Creep penetration experiments with a constant indentation force did not show an increase in the penetration rate, confirming that flow reversal is the cause of the unsteady penetration rate. Our results suggest that dwell can occur in a ductile noncracking target due to flow reversal. This phenomenon of flow reversal is rather widespread and present in a wide range of impact situations, including water-jet cutting, needleless injection, and deposit removal via a fluid jet.
Resumo:
We present novel batch and online (sequential) versions of the expectation-maximisation (EM) algorithm for inferring the static parameters of a multiple target tracking (MTT) model. Online EM is of particular interest as it is a more practical method for long data sets since in batch EM, or a full Bayesian approach, a complete browse of the data is required between successive parameter updates. Online EM is also suited to MTT applications that demand real-time processing of the data. Performance is assessed in numerical examples using simulated data for various scenarios. For batch estimation our method significantly outperforms an existing gradient based maximum likelihood technique, which we show to be significantly biased. © 2014 Springer Science+Business Media New York.