116 resultados para Synchronization algorithms


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two new maximum power point tracking algorithms are presented: the input voltage sensor, and duty ratio maximum power point tracking algorithm (ViSD algorithm); and the output voltage sensor, and duty ratio maximum power point tracking algorithm (VoSD algorithm). The ViSD and VoSD algorithms have the features, characteristics and advantages of the incremental conductance algorithm (INC); but, unlike the incremental conductance algorithm which requires two sensors (the voltage sensor and current sensor), the two algorithms are more desirable because they require only one sensor: the voltage sensor. Moreover, the VoSD technique is less complex; hence, it requires less computational processing. Both the ViSD and the VoSD techniques operate by maximising power at the converter output, instead of the input. The ViSD algorithm uses a voltage sensor placed at the input of a boost converter, while the VoSD algorithm uses a voltage sensor placed at the output of a boost converter. © 2011 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human locomotion is known to be influenced by observation of another person's gait. For example, athletes often synchronize their step in long distance races. However, how interaction with a virtual runner affects the gait of a real runner has not been studied. We investigated this by creating an illusion of running behind a virtual model (VM) using a treadmill and large screen virtual environment showing a video of a VM. We looked at step synchronization between the real and virtual runner and at the role of the step frequency (SF) in the real runner's perception of VM speed. We found that subjects match VM SF when asked to match VM speed with their own (Figure 1). This indicates step synchronization may be a strategy of speed matching or speed perception. Subjects chose higher speeds when VMSF was higher (though VM was 12km/h in all videos). This effect was more pronounced when the speed estimate was rated verbally while standing still. (Figure 2). This may due to correlated physical activity affecting the perception of VM speed [Jacobs et al. 2005]; or step synchronization altering the subjects' perception of self speed [Durgin et al. 2007]. Our findings indicate that third person activity in a collaborative virtual locomotive environment can have a pronounced effect on an observer's gait activity and their perceptual judgments of the activity of others: the SF of others (virtual or real) can potentially influence one's perception of self speed and lead to changes in speed and SF. A better understanding of the underlying mechanisms would support the design of more compelling virtual trainers and may be instructive for competitive athletics in the real world. © 2009 ACM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Algorithms are presented for detection and tracking of multiple clusters of co-ordinated targets. Based on a Markov chain Monte Carlo sampling mechanization, the new algorithms maintain a discrete approximation of the filtering density of the clusters' state. The filters' tracking efficiency is enhanced by incorporating various sampling improvement strategies into the basic Metropolis-Hastings scheme. Thus, an evolutionary stage consisting of two primary steps is introduced: 1) producing a population of different chain realizations, and 2) exchanging genetic material between samples in this population. The performance of the resulting evolutionary filtering algorithms is demonstrated in two different settings. In the first, both group and target properties are estimated whereas in the second, which consists of a very large number of targets, only the clustering structure is maintained. © 2009 IFAC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Frequency entrainment and nonlinear synchronization are commonly observed between simple oscillatory systems, but their occurrence and behavior in continuum fluid systems are much less well understood. Motivated by possible applications to geophysical fluid systems, such as in atmospheric circulation and climate dynamics, we have carried out an experimental study of the interaction of fully developed baroclinic instability in a differentially heated, rotating fluid annulus with an externally imposed periodic modulation of the thermal boundary conditions. In quasiperiodic and chaotic amplitude-modulated traveling wave regimes, the results demonstrate a strong interaction between the natural periodic modulation of the wave amplitude and the externally imposed forcing. This leads to partial or complete phase synchronization. Synchronization effects were observed even with very weak amplitudes of forcing, and were found with both 1:1 and 1:2 frequency ratios between forcing and natural oscillations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synchronization phenomena in a fluid dynamical analogue of atmospheric circulation is studied experimentally by investigating the dynamics of a pair of thermally coupled, rotating baroclinic annulus systems. The coupling between the systems is in the well-known master-slave configuration in both periodic and chaotic regimes. Synchronization tools such as phase dynamics analysis are used to study the dynamics of the coupled system and demonstrate phase synchronization and imperfect phase synchronization, depending upon the coupling strength and parameter mismatch.