77 resultados para Storage proteins


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Passive magnetic bearings are ideal components for energy storage flywheels which require small dynamic loads and low-maintenance bearings with minimal power requirements. High temperature superconductors such as YBCO can be used to fabricate these bearings and achieve the desired magnetic properties. Stiffness and gap decay due to high speed can be addressed by dynamically altering bearing geometry to provide active control with bulk materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Desired performance of unpressurized integral collector storage systems hinges on the appropriate selection of storage volume and the immersed heat exchanger. This paper presents analytical results expressing the relation between storage volume, number of heat exchanger transfer units and temperature limited performance. For a system composed of a single storage element, the limiting behavior of a perfectly stratified storage element is shown to be superior to a fully-mixed storage element, consistent with more general analysis of thermal storage. Since, however, only the fully-mixed limit is readily obtainable in a physical system, the present paper also examines a division of the storage volume into separate compartments. This multi-element storage system shows significantly improved discharge characteristics as a result of improved elemental area utilization and temperature variation between elements, comparable in many cases to a single perfectly-stratified storage element. In addition, the multi-element system shows increased robustness with respect to variations in heat exchanger effectiveness and initial storage temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wind power generation as one of the most popular renewable energy applications is absorbing more and more attention all over the world. However, output power fluctuations of wind farm due to random variations of wind speed can cause network frequency and voltage flicker in power systems. The power quality consequently declines, particularly in an isolated power system such as the power system in a remote community or a small island. This paper proposes an application of superconducting magnetic energy storage (SMES) to minimize output fluctuations of an isolated power system with wind farm. The isolated power system is fed by a diesel generator and a wind generator consisting of a wind turbine and squirrel cage induction machine. The control strategy is detailed and the proposed system is evaluated by simulation in Matlab/Simulink.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The increasing use of renewable energy technologies for electricity generation, many of which have an unpredictably intermittent nature, will inevitably lead to a greater demand for large-scale electricity storage schemes. For example, the expanding fraction of electricity produced by wind turbines will require either backup or storage capacity to cover extended periods of wind lull. This paper describes a recently proposed storage scheme, referred to here as Pumped Thermal Storage (PTS), and which is based on "sensible heat" storage in large thermal reservoirs. During the charging phase, the system effectively operates as a high temperature-ratio heat pump, extracting heat from a cold reservoir and delivering heat to a hot one. In the discharge phase the processes are reversed and it operates as a heat engine. The round- trip efficiency is limited only by process irreversibilities (as opposed to Second Law limitations on the coefficient of performance and the thermal efficiency of the heat pump and heat engine respectively). PTS is currently being developed in both France and England. In both cases, the schemes operate on the Joule-Brayton (gas turbine) cycle, using argon as the working fluid. However, the French scheme proposes the use of turbomachinery for compression and expansion, whereas for that being developed in England reciprocating devices are proposed. The current paper focuses on the impact of the various process irreversibilities on the thermodynamic round-trip efficiency of the scheme. Consideration is given to compression and expansion losses and pressure losses (in pipe-work, valves and thermal reservoirs); heat transfer related irreversibility in the thermal reservoirs is discussed but not included in the analysis. Results are presented demonstrating how the various loss parameters and operating conditions influence the overall performance.