79 resultados para Shoemaker, Nathan.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present an analytical field-effect method to extract the density of subgap states (subgap DOS) in amorphous semiconductor thin-film transistors (TFTs), using a closed-form relationship between surface potential and gate voltage. By accounting the interface states in the subthreshold characteristics, the subgap DOS is retrieved, leading to a reasonably accurate description of field-effect mobility and its gate voltage dependence. The method proposed here is very useful not only in extracting device performance but also in physically based compact TFT modeling for circuit simulation. © 2012 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wireless power transfer is experimentally demonstrated by transmission between an AC power transmitter and receiver, both realised using thin film technology. The transmitter and receiver thin film coils are chosen to be identical in order to promote resonant coupling. Planar spiral coils are used because of the ease of fabrication and to reduce the metal layer thickness. The energy transfer efficiency as a function of transfer distance is analysed along with a comparison between the theoretical and the experimental results. © 2012 Materials Research Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A photodiode consisting of nanopillars of thin-film silicon p-i-n on an array of vertically aligned carbon nanotubes (CNTs) with a noncontinuous cathode electrode is demonstrated. The structure exploits the intrinsic enhancement of the CNTs' electric field, which leads to reduction in the photodiode's operating voltage and response time and enhancement of optical coupling due to better light trapping, as compared with the conventional planar photodiode. These improvements translate to higher resolution and higher frame rate flat-panel imaging systems for a broad range of applications, including computed tomography and particle detection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

All-chemical vapor deposited silicon nitride / monolayer graphene TFTs have been fabricated. Polychromatic Raman spectroscopy shows high quality monolayer graphene channels with uniform coverage and significant interfacial doping at the source-drain contacts. Nominal mobilities of approximately 1900 cm 2V-1s-1 have been measured opening up a potentially useful platform for analogue and RFR-based applications fabricated through allchemical vapor deposition processes. © The Electrochemical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a simple and semi-physical analytical description of the current-voltage characteristics of amorphous oxide semiconductor thin-film transistors in the above-threshold and sub-threshold regions. Both regions are described by single unified expression that employs the same set of model parameter values directly extracted from measured terminal characteristics. The model accurately reproduces measured characteristics of amorphous semiconductor thin film transistors in general, yielding a scatter of < 4%. © 1980-2012 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A gate-modulated nanowire oxide photosensor is fabricated by electron-beam lithography and conventional dry etch processing.. The device characteristics are good, including endurance of up to 10(6) test cycles, and gate-pulse excitation is used to remove persistent photoconductivity. The viability of nanowire oxide phototransistors for high speed and high resolution applications is demonstrated, thus potentially expanding the scope of exploitation of touch-free interactive displays.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we present a physically-based compact model for the sub-threshold behavior in a TFT with an amorphous semiconductor channel. Both drift and diffusion current components are considered and combined using an harmonic average. Here, the diffusion component describes the exponential current behavior due to interfacial deep states, while the drift component is associated with presence of localized deep states formed by dangling bonds broken from weak bonds in the bulk and follows a power law. The proposed model yields good agreement with measured results. © 2013 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite material weaknesses, considerable progress has been made in designing large area systems such as displays and imaging arrays. This talk will address the various large area technologies, and in particular, review amorphous oxide semiconductors and associated design approaches, along with driving schemes for displays, imaging and other applications. © 2013 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

© 2013 IEEE. This paper reviews the mechanisms underlying visible light detection based on phototransistors fabricated using amorphous oxide semiconductor technology. Although this family of materials is perceived to be optically transparent, the presence of oxygen deficiency defects, such as vacancies, located at subgap states, and their ionization under illumination, gives rise to absorption of blue and green photons. At higher energies, we have the usual band-to-band absorption. In particular, the oxygen defects remain ionized even after illumination ceases, leading to persistent photoconductivity, which can limit the frame-rate of active matrix imaging arrays. However, the persistence in photoconductivity can be overcome through deployment of a gate pulsing scheme enabling realistic frame rates for advanced applications such as sensor-embedded display for touch-free interaction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we present a study on electrical and optical characteristics of n-type tin-oxide nanowires integrated based on top-down scale-up strategy. Through a combination of contact printing and plasma based back-channel passivation, we have achieved stable electrical characteristics with standard deviation in mobility and threshold voltage of 9.1% and 25%, respectively, for a large area of 1× 1 cm2 area. Through use of contact printing, high alignment of nanowires was achieved thus minimizing the number of nanowire-nanowire junctions, which serve to limit carrier transport in the channel. In addition, persistent photoconductivity has been observed, which we attribute to oxygen vacancy ionization and subsequent elimination using a gate pulse driving scheme. © 2014 IEEE.