222 resultados para Semiconductor Laser
Resumo:
Jitter measurements were performed on a monolithically integrated active/passive cavity multiple quantum well laser, actively mode-locked at 10 GHz via modulation of an absorber section. Sub-10 ps pulses were produced upon optimization of the drive conditions to the gain, distributed Bragg reflector, and absorber sections. A model was also developed using travelling wave rate equations. Simulation results suggest that spontaneous emission is the dominant cause of jitter, with carrier dynamics having a time constant of the order of 1 ns.
Resumo:
A study of the relative performance of an integrated semiconductor optical amplifier (SOA)/distributed feedback laser wavelength converter that can operate with negative penalties at 10 Gb/s rates is conducted. It is found that reduction of more than 25 times in required input powers are achieved when compared with laser or SOA converters.
Resumo:
A semiconductor optical amplifier monolithically integrated with a distributed feedback pump laser is used for non-degenerate four wave mixing applications. Experimental results are presented which illustrate the use of this compact device for both wavelength conversion and dispersion compensation applications at high data rates.
Resumo:
This paper reviews recent advances in superradiant (SR) emission in semiconductors at room temperature, a process which has been shown to enable the generation on demand of high power picosecond or subpicosecond pulses across a range of different wavelengths. The different characteristic features of SR emission from semiconductor devices with bulk, quantum-well, and quantum-dot active regions are outlined, and particular emphasis is placed on comparing the characteristic features of SR with those of lasing. Finally, potential applications of SR pulses are discussed. © 1995-2012 IEEE.
Resumo:
Ultrashort-pulse lasers with spectral tuning capability have widespread applications in fields such as spectroscopy, biomedical research and telecommunications. Mode-locked fibre lasers are convenient and powerful sources of ultrashort pulses, and the inclusion of a broadband saturable absorber as a passive optical switch inside the laser cavity may offer tuneability over a range of wavelengths. Semiconductor saturable absorber mirrors are widely used in fibre lasers, but their operating range is typically limited to a few tens of nanometres, and their fabrication can be challenging in the 1.3-1.5 microm wavelength region used for optical communications. Single-walled carbon nanotubes are excellent saturable absorbers because of their subpicosecond recovery time, low saturation intensity, polarization insensitivity, and mechanical and environmental robustness. Here, we engineer a nanotube-polycarbonate film with a wide bandwidth (>300 nm) around 1.55 microm, and then use it to demonstrate a 2.4 ps Er(3+)-doped fibre laser that is tuneable from 1,518 to 1,558 nm. In principle, different diameters and chiralities of nanotubes could be combined to enable compact, mode-locked fibre lasers that are tuneable over a much broader range of wavelengths than other systems.
Resumo:
Wavelength conversion in the 1550 nm regime was achieved in an integrated semiconductor optical amplifier (SOA)/DFB laser by modulating the output power of the laser with a light beam of a different wavelength externally injected into the SOA section. A 12 dB output extinction ratio was obtained for an average coupled input power of 75 μW with the laser section driven at 65 mA and the amplifier section at 180 mA. The response time achieved was as low as 13 ps with the laser biased at 175 mA even with low extinction ratios. The laser exhibits a similar recovery time allowing potentially very high bit-rate operation.