62 resultados para Semiconducting zinc compounds
Resumo:
In this paper, we demonstrate an approach for the local synthesis of ZnO nanowires (ZnO NWs) and the potential for such structures to be incorporated into device applications. Three network ZnO NW devices are fabricated on a chip by using a bottom-up synthesis approach. Microheaters (defined by standard semiconductor processing) are used to synthesize the ZnO NWs under a zinc nitrate (Zn(NO3)2·6H2O) and hexamethylenetetramine (HMTA, (CH2)6·N4) solution. By controlling synthesis parameters, varying densities of networked ZnO NWs are locally synthesized on the chip. The fabricated networked ZnO NW devices are then characterized using UV excitation and cyclic voltammetry (CV) experiments to measure their photoresponse and electrochemical properties. The experimental results show that the techniques and material systems presented here have the potential to address interesting device applications using fabrication methods that are fully compatible with standard semiconductor processing. © 2013 IEEE.
Resumo:
We present results on laser action from liquid crystal compounds whereby one sub-unit of the molecular structure consists of the cyano-substituted chromophore, {phenylene-bis (2-cyanopropene)}, similar to the basic unit of the semiconducting polymer structure poly(cyanoterephthalylidene). These compounds were found to exhibit nematic liquid crystal phases. In addition, by virtue of the liquid crystalline properties, the compounds were found to be highly miscible in wide temperature range commercial nematogen mixtures. When optically excited at λ = 355 nm, laser emission was observed in the blue/green region of the visible spectrum (480-530 nm) and at larger concentrations by weight than is achievable using conventional laser dyes. Upon increasing the concentration of dye from 2 to 5 wt.% the threshold was found to increase from Eth = 0.42 ± 0.02 μJ/pulse (≈20 mJ/cm2) to Eth = 0.66 ± 0.03 μJ/pulse (≈34 mJ/cm2). Laser emission was also observed at concentrations of 10 wt.% but was less stable than that observed for lower concentrations of the chromophore. © 2012 Elsevier B.V. All rights reserved.
Resumo:
Synthesis of polycationic compounds by the spray-drying technique is an interesting alternative in the domain of aqueous precursor synthesis methods. Spray drying yields high quality samples with good reproducibility. The possibility of scaling up for production of large quantities with fast processing time is well established by the commercial availability of powders of various compositions. In this paper, we have discussed the advantages and limitations of this method and demonstrated its interest by synthesizing a few polycationic compounds selected for their attractive properties of thermoelectricity [Bi1.68Ca2Co1.69O 8, La0.95A0.05CoO3 (A=Ca, Sr, Ba)] or magnetoresistance [La0.70A0.30MnO3 (A=Sr, Ba)]. We have confirmed the quality of these samples by reporting their structure, magnetic and transport properties. © 2010 Elsevier Ltd All rights reserved.
Resumo:
LiMn2-xTixO4 compounds with 0 ≤ x ≤ 1 were prepared by solid state reaction and Pechini technique. Powder X-ray diffraction showed that all samples crystallize with the spinel crystal structure (S.G. Fd3-m). The cubic unit-cell parameter increases with the Ti content. The influence of the Ti content and cationic distribution on the magnetic properties of the compounds was studied by measuring the temperature and magnetic field dependences of the magnetization: substitution by non-magnetic d0 Ti4+ ions appeared to weaken the magnetic interactions between the manganese ions. The electrical properties of LiMnTiO4 were studied by AC impedance spectroscopy and DC polarisation measurements, which revealed the electronic character of the conduction process. © 2006 Elsevier B.V. All rights reserved.
Resumo:
Calcium-substituted lanthanum manganite compounds were synthesized by the spray drying technique. This method - whose main advantages are versatility, high reproducibility and scalability - yields small grain materials of high homogeneity and displaying low-field magnetoresistance effects. We report about the physical and chemical characterizations of these samples in order to investigate the potential interest of spray drying for the production of materials for low-field magnetoresistance applications. We have studied the dependence of the low-field magnetoresistance on the temperature and duration of the thermal treatment applied to the pelletized powders. The issue of the shape anisotropy (demagnetisation effects) influence on the magnetoresistance properties has also been dealt with. © 2005 Springer Science + Business Media, Inc.
Resumo:
In this paper we report about the electrical properties of La 0.7Ca0.3MnO3 compounds substituted by copper on the manganese site and/or deliberately contaminated by SiO2 in the reactant mixture. Several phenomena have been observed and discussed. SiO2 addition leads to the formation of an apatite-like secondary phase that affects the electrical conduction through the percolation of the charge carriers. On the other hand, depending on the relative amounts of copper and silicon, the temperature dependence of the electrical resistivity can be noticeably modified: our results enable us to compare the effects of crystallographic vacancies on the A and B sites of the perovskite with the influence of the copper ions substituted on the manganese site. The most original result occurs for the compounds with a small ratio Si/Cu, which display double-peaked resistivity vs. temperature curves. © 2003 Elsevier B.V. All rights reserved.
Resumo:
It is widely reported that threshold voltage and on-state current of amorphous indium-gallium-zinc-oxide bottom-gate thin-film transistors are strongly influenced by the choice of source/drain contact metal. Electrical characterisation of thin-film transistors indicates that the electrical properties depend on the type and thickness of the metal(s) used. Electron transport mechanisms and possibilities for control of the defect state density are discussed. Pilling-Bedworth theory for metal oxidation explains the interaction between contact metal and amorphous indium-gallium-zinc-oxide, which leads to significant trap formation. Charge trapping within these states leads to variable capacitance diode-like behavior and is shown to explain the thin-film transistor operation. © 2013 AIP Publishing LLC.
Resumo:
The ultrafast charge carrier dynamics in GaAs/conjugated polymer type II heterojunctions are investigated using time-resolved photoluminescence spectroscopy at 10 K. By probing the photoluminescence at the band edge of GaAs, we observe strong carrier lifetime enhancement for nanowires blended with semiconducting polymers. The enhancement is found to depend crucially on the ionization potential of the polymers with respect to the Fermi energy level at the surface of the GaAs nanowires. We attribute these effects to electron doping by the polymer which reduces the unsaturated surface-state density in GaAs. We find that when the surface of nanowires is terminated by native oxide, the electron injection across the interface is greatly reduced and such surface doping is absent. Our results suggest that surface engineering via π-conjugated polymers can substantially improve the carrier lifetime in nanowire hybrid heterojunctions with applications in photovoltaics and nanoscale photodetectors.
Resumo:
Controlling the crystallographic phase purity of III-V nanowires is notoriously difficult, yet this is essential for future nanowire devices. Reported methods for controlling nanowire phase require dopant addition, or a restricted choice of nanowire diameter, and only rarely yield a pure phase. Here we demonstrate that phase-perfect nanowires, of arbitrary diameter, can be achieved simply by tailoring basic growth parameters: temperature and V/III ratio. Phase purity is achieved without sacrificing important specifications of diameter and dopant levels. Pure zinc blende nanowires, free of twin defects, were achieved using a low growth temperature coupled with a high V/III ratio. Conversely, a high growth temperature coupled with a low V/III ratio produced pure wurtzite nanowires free of stacking faults. We present a comprehensive nucleation model to explain the formation of these markedly different crystal phases under these growth conditions. Critical to achieving phase purity are changes in surface energy of the nanowire side facets, which in turn are controlled by the basic growth parameters of temperature and V/III ratio. This ability to tune crystal structure between twin-free zinc blende and stacking-fault-free wurtzite not only will enhance the performance of nanowire devices but also opens new possibilities for engineering nanowire devices, without restrictions on nanowire diameters or doping.
Resumo:
ZnxSnyOz thin films (<100nm thickness), deposited by remote sputtering from a metal target using a confined argon plasma and oxygen gas jet near the sample, were investigated for their material properties. No visible deformation or curl was observed when deposited on plastic. Materials were confirmed to be amorphous and range between 5 and 10 at.% Sn concentration by x-ray diffraction, x-ray photoemission spectroscopy and energydispersive x-ray spectroscopy. Factors affecting the material composition over time are discussed. Depletion of the Sn as the target ages is suspected. © The Electrochemical Society.
Resumo:
Self-switching diodes have been fabricated within a single layer of indium-gallium zinc oxide (IGZO). Current-voltage (I-V) measurements show the nanometer-scale asymmetric device gave a diode-like response. Full current rectification was achieved using very narrow channel widths of 50nm, with a turn-on voltage, Von, of 2.2V. The device did not breakdown within the -10V bias range measured. This single diode produced a current of 0.1μA at 10V and a reverse current of less than 0.1nA at -10V. Also by adjusting the channel width for these devices, Von could be altered; however, the effectiveness of the rectification also changed. © 2013 IEEE.