55 resultados para Relative pleon weight
Resumo:
Underground structures located in liquefiable soil deposits are susceptible to floatation following an earthquake event due to their lower unit weight relative to the surrounding saturated soil. Centrifuge tests have been carried out to assess the effectiveness of existing remediation techniques in reducing the uplift of underground structures, namely in situ densification and the use of coarse sand backfill. The centrifuge test results showed that these methods do reduce the uplift displacement of buoyant structures. Their performance was thereafter linked to the theoretical mechanism of floatation of underground structures. Based on the understanding from preceding tests, a further improvement on the use of the coarse sand backfill was carried out, which produced a greater reduction in the uplift displacement of the structure. Each of these techniques, however, does pose issues when applied in the field, such as possible damage to surrounding structures, construction issues and maintenance problems.
Resumo:
Carbon fibre reinforced polymers (CFRP) are well-known for the excellent combination of mechanical and thermal properties with light weight. However, their tribological properties are still largely uncovered. In this work an experimental study of friction between two CFRP at weak normal load (inferior to 20 N) was performed. Two effects were scrutinuously studied during the experiments: fibre volume friction and fibre orientation. In addition to this experimental work, a modelling of a contact between two FRP was realized. It is supposed that the real area of contact consists of a multitude of microcontacts of three types: fibre-fibre, fibre-matrix and matrix-matrix. The experimental work has shown a small rise in friction coefficient with the change of fibre orientation of two composites from parallel to perpendicular relative to the sliding direction. In parallel, the proposed analytical model predicts a independence of this angle. Regarding the influence of the fibre volume fraction, Vf, the experiments reveal a decrease in friction coefficient of 50% with a change of Vf from 0% to 62%. This observation corresponds to the qualitative dependence depicted with the model. © 2012 EDP Sciences.
Resumo:
Hot-pressed laminates with a [0/90]48 lay-up, consisting of 83% by volume of ultra high molecular-weight polyethylene (UHMWPE) fibres, and 17% by volume of polyurethane (PU) matrix, were cut into cantilever beams and subjected to transverse end-loading. The collapse mechanisms were observed both visually and by X-ray scans. Short beams deform elastically and collapse plastically in longitudinal shear, with a shear strength comparable to that observed in double notch, interlaminar shear tests. In contrast, long cantilever beams deform in bending and collapse via a plastic hinge at the built-in end of the beam. The plastic hinge is formed by two wedge-shaped microbuckle zones that grow in size and in intensity with increasing hinge rotation. This new mode of microbuckling under macroscopic bending involves both elastic bending and shearing of the plies, and plastic shear of the interface between each ply. The double-wedge pattern contrasts with the more usual parallel-sided plastic microbuckle that occurs in uniaxial compression. Finite element simulations and analytical models give additional insight into the dominant material and geometric parameters that dictate the collapse response of the UHMWPE composite beam in bending. Detailed comparisons between the observed and predicted collapse responses are used in order to construct a constitutive model for laminated UHMWPE composites. © 2013 Elsevier Ltd.
Resumo:
Polymer composites comprising ultra-high molecular weight polyethylene (UHWMPE) fibers in a compliant matrix are now widely used in ballistic applications with varying levels of success. This is primarily due to a poor understanding of the mechanics of penetration of these composites in ballistic protection systems. In this study, we report experimental observations of the penetration mechanisms in four model systems impacted by a 12.7 mm diameter spherical steel projectile. The four model targets designed to highlight different penetration mechanisms in Dyneema® UHWMPE composites were: (i) a bare aluminum plate; (ii) the same plate fully encased in a 5.9 mm thick casing of Dyneema®; (iii) the fully encased plate with a portion of the Dyneema® removed from the front face so that the projectile impacts directly the Al plate; and (iv) the fully encased plate with a portion of the Dyneema® removed from the rear face so that the projectile can exit the Al plate without again interacting with the Dyneema®. A combination of synchronized high speed photography with three cameras, together with post-test examination of the targets via X-ray tomography and optical microscopy was used to elucidate the deformation and perforation mechanisms. The measurements show that the ballistic resistance of these targets increases in the order: bare Al plate, rear face cutout target, fully encased target and front face cutout target. These findings are explained based on the following key findings: (a) the ballistic performance of Dyneema® plates supported on a foundation is inferior to Dyneema® plates supported along their edges; (b) the apparent ballistic resistance of Dyneema® plates increases if the plates are given an initial velocity prior to the impact by the projectile, thereby reducing the relative velocity between the Dyneema® plate and projectile; and (c) when the projectile is fragmented prior to impact, the spatially and temporally distributed loading enhances the ballistic resistance of the Dyneema®. The simple model targets designed here have elucidated mechanisms by which Dyneema® functions in multi-material structures. © 2014 Elsevier Ltd.
Resumo:
A novel ultra-lightweight three-dimensional (3-D) cathode system for lithium sulphur (Li-S) batteries has been synthesised by loading sulphur on to an interconnected 3-D network of few-layered graphene (FLG) via a sulphur solution infiltration method. A free-standing FLG monolithic network foam was formed as a negative of a Ni metallic foam template by CVD followed by etching away of Ni. The FLG foam offers excellent electrical conductivity, an appropriate hierarchical pore structure for containing the electro-active sulphur and facilitates rapid electron/ion transport. This cathode system does not require any additional binding agents, conductive additives or a separate metallic current collector thus decreasing the weight of the cathode by typically ∼20-30 wt%. A Li-S battery with the sulphur-FLG foam cathode shows good electrochemical stability and high rate discharge capacity retention for up to 400 discharge/charge cycles at a high current density of 3200 mA g(-1). Even after 400 cycles the capacity decay is only ∼0.064% per cycle relative to the early (e.g. the 5th cycle) discharge capacity, while yielding an average columbic efficiency of ∼96.2%. Our results indicate the potential suitability of graphene foam for efficient, ultra-light and high-performance batteries.
Resumo:
Tunnelling in urban areas continues to increase and has highlighted the need for a better understanding of the impact of tunnel excavations on existing buildings. This paper considers the influence of surface structures on ground displacements caused by tunnelling in sand through finite element modelling and centrifuge testing. First, the importance of modelling assumptions is evaluated by comparing centrifuge modelling results to finite element modelling results for various soil constitutive models: both a Young's modulus that linearly increases with depth and a power law relation between the soil stiffness and stresses are considered. Second, the most effective soil constitutive model was used to perform a sensitivity study on the effect of different factors governing the structural response. In particular, the effect of the building stiffness and weight on the modification of soil displacements is investigated by introducing a simple surface structure. The use of a no-tension interface between the building and the soil was found to be essential to investigate the effect of weight on gap formation between the soil and the structure, as observed during the experimental tests. Results show the importance of considering the relation between the building weight and the relative stiffness between the building and the soil when assessing the structural response. © 2014 Korean Geotechnical Society.
Resumo:
© 2014 IEEE. This exploratory study addresses a gap in management literature by addressing the role of location in the continuously expanding field of open innovation research. In this context, we analyze potential negative effects of absolute geography and relative proximity on open innovation practices in high-tech small and medium-sized enterprises (SMEs) in the United Kingdom. Drawing upon cluster theory and business ecosystem literature, the analysis from three SME case studies in the East of England suggests that presumed 'favorable' location variables, such as close relative proximity between partners and the presence of economic clusters, can have certain negative effects on open innovation practices.