60 resultados para Pseudomonotone Generalized Directional Derivative
Resumo:
Recently there has been interest in combined gen- erative/discriminative classifiers. In these classifiers features for the discriminative models are derived from generative kernels. One advantage of using generative kernels is that systematic approaches exist how to introduce complex dependencies beyond conditional independence assumptions. Furthermore, by using generative kernels model-based compensation/adaptation tech- niques can be applied to make discriminative models robust to noise/speaker conditions. This paper extends previous work with combined generative/discriminative classifiers in several directions. First, it introduces derivative kernels based on context- dependent generative models. Second, it describes how derivative kernels can be incorporated in continuous discriminative models. Third, it addresses the issues associated with large number of classes and parameters when context-dependent models and high- dimensional features of derivative kernels are used. The approach is evaluated on two noise-corrupted tasks: small vocabulary AURORA 2 and medium-to-large vocabulary AURORA 4 task.
Resumo:
Recently there has been interest in combining generative and discriminative classifiers. In these classifiers features for the discriminative models are derived from the generative kernels. One advantage of using generative kernels is that systematic approaches exist to introduce complex dependencies into the feature-space. Furthermore, as the features are based on generative models standard model-based compensation and adaptation techniques can be applied to make discriminative models robust to noise and speaker conditions. This paper extends previous work in this framework in several directions. First, it introduces derivative kernels based on context-dependent generative models. Second, it describes how derivative kernels can be incorporated in structured discriminative models. Third, it addresses the issues associated with large number of classes and parameters when context-dependent models and high-dimensional feature-spaces of derivative kernels are used. The approach is evaluated on two noise-corrupted tasks: small vocabulary AURORA 2 and medium-to-large vocabulary AURORA 4 task. © 2011 IEEE.
Resumo:
This paper presents a generalized vector control system for a generic brushless doubly fed (induction) machine (BDFM) with nested-loop type rotor. The generic BDFM consists of p1/p2 pole-pair stator windings and a nested-loop rotor with N number of loops per nest. The vector control system is derived based on the basic BDFM equation in the synchronous mode accompanied with an appropriate synchronization approach to the grid. An analysis is performed for the vector control system using the generic BDFM vector model. The analysis proves the efficacy of the proposed approach in BDFM electromagnetic torque and rotor flux control. In fact, in the proposed vector control system, the BDFM torque can be controlled very effectively promising a high-performance BDFM shaft speed control system. A closed-loop shaft speed control system is composed based on the presented vector control system whose performance is examined both in simulations and experiments. The results confirm the high performance of the proposed approach in BDFM shaft speed control as well as a very close agreement between the simulations and experiments. Tests are performed on a 180-frame prototype BDFM. © 2012 IEEE.
Resumo:
Unbiased location- and scale-invariant `elemental' estimators for the GPD tail parameter are constructed. Each involves three log-spacings. The estimators are unbiased for finite sample sizes, even as small as N=3. It is shown that the elementals form a complete basis for unbiased location- and scale-invariant estimators constructed from linear combinations of log-spacings. Preliminary numerical evidence is presented which suggests that elemental combinations can be constructed which are consistent estimators of the tail parameter for samples drawn from the pure GPD family.
Resumo:
In a companion paper (McRobie(2013) arxiv:1304.3918), a simple set of `elemental' estimators was presented for the Generalized Pareto tail parameter. Each elemental estimator: involves only three log-spacings; is absolutely unbiased for all values of the tail parameter; is location- and scale-invariant; and is valid for all sample sizes $N$, even as small as $N= 3$. It was suggested that linear combinations of such elementals could then be used to construct efficient unbiased estimators. In this paper, the analogous mathematical approach is taken to the Generalised Extreme Value (GEV) distribution. The resulting elemental estimators, although not absolutely unbiased, are found to have very small bias, and may thus provide a useful basis for the construction of efficient estimators.
Resumo:
Hybrid nanostructured materials can exhibit different properties than their constituent components, and can enable decoupled engineering of energy conversion and transport functions. Novel means of building hybrid assemblies of crystalline C 60 and carbon nanotubes (CNTs) are presented, wherein aligned CNT films direct the crystallization and orientation of C 60 rods from solution. In these hybrid films, the C 60 rods are oriented parallel to the direction of the CNTs throughout the thickness of the film. High-resolution imaging shows that the crystals incorporate CNTs during growth, yet grazing-incidence X-ray diffraction (GIXD) shows that the crystal structure of the C 60 rods is not perturbed by the CNTs. Growth kinetics of the C 60 rods are enhanced 8-fold on CNTs compared to bare Si, emphasizing the importance of the aligned, porous morphology of the CNT films as well as the selective surface interactions between C 60 and CNTs. Finally, it is shown how hybrid C 60-CNT films can be integrated electrically and employed as UV detectors with a high photoconductive gain and a responsivity of 10 5 A W -1 at low biases (± 0.5 V). The finding that CNTs can induce rapid, directional crystallization of molecules from solution may have broader implications to the science and applications of crystal growth, such as for inorganic nanocrystals, proteins, and synthetic polymers. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
In this paper we develop a new approach to sparse principal component analysis (sparse PCA). We propose two single-unit and two block optimization formulations of the sparse PCA problem, aimed at extracting a single sparse dominant principal component of a data matrix, or more components at once, respectively. While the initial formulations involve nonconvex functions, and are therefore computationally intractable, we rewrite them into the form of an optimization program involving maximization of a convex function on a compact set. The dimension of the search space is decreased enormously if the data matrix has many more columns (variables) than rows. We then propose and analyze a simple gradient method suited for the task. It appears that our algorithm has best convergence properties in the case when either the objective function or the feasible set are strongly convex, which is the case with our single-unit formulations and can be enforced in the block case. Finally, we demonstrate numerically on a set of random and gene expression test problems that our approach outperforms existing algorithms both in quality of the obtained solution and in computational speed. © 2010 Michel Journée, Yurii Nesterov, Peter Richtárik and Rodolphe Sepulchre.
Generalized Spike-and-Slab Priors for Bayesian Group Feature Selection Using Expectation Propagation
Resumo:
Biomimetic micro-swimmers can be used for various medical applications, such as targeted drug delivery and micro-object (e.g. biological cells) manipulation, in lab-on-a-chip devices. Bacteria swim using a bundle of flagella (flexible hair-like structures) that form a rotating cork-screw of chiral shape. To mimic bacterial swimming, we employ a computational approach to design a bacterial (chirality-induced) swimmer whose chiral shape and rotational velocity can be controlled by an external magnetic field. In our model, we numerically solve the coupled governing equations that describe the system dynamics (i.e. solid mechanics, fluid dynamics and magnetostatics). We explore the swimming response as a function of the characteristic dimensionless parameters and put special emphasis on controlling the swimming direction. Our results provide fundamental physical insight on the chirality-induced propulsion, and it provides guidelines for the design of magnetic bi-directional micro-swimmers. © 2013 The Author(s) Published by the Royal Society. All rights reserved.
Resumo:
A generalized theory for the viscoelastic behavior of idealized bituminous mixtures (asphalts) is presented. The mathematical model incorporates strain rate and temperature dependency as well as nonmonotonic loading and unloading with shape recovery. The stiffening effect of the aggregate is included. The model is of phenomenological nature. It can be calibrated using a relatively limited set of experimental parameters, obtainable by uniaxial tests. It is shown that the mathematical model can be represented as a special nonlinear form of the Burgers model. This facilitates the derivation of numerical algorithms for solving the constitutive equations. A numerical scheme is implemented in a user material subroutine (UMAT) in the finite-element analysis (FEA) code ABAQUS. Simulation results are compared with uniaxial and indentation tests on an idealized asphalt mix. © 2014 American Society of Civil Engineers.