59 resultados para Price policy.
Resumo:
In the face of increasing demand and limited emission reduction opportunities, the steel industry will have to look beyond its process emissions to bear its share of emission reduction targets. One option is to improve material efficiency - reducing the amount of metal required to meet services. In this context, the purpose of this paper is to explore why opportunities to improve material efficiency through upstream measures such as yield improvement and lightweighting might remain underexploited by industry. Established input-output techniques are applied to the GTAP 7 multi-regional input-output model to quantify the incentives for companies in key steel-using sectors (such as property developers and automotive companies) to seek opportunities to improve material efficiency in their upstream supply chains under different short-run carbon price scenarios. Because of the underlying assumptions, the incentives are interpreted as overestimates. The principal result of the paper is that these generous estimates of the incentives for material efficiency caused by a carbon price are offset by the disincentives to material efficiency caused by labour taxes. Reliance on a carbon price alone to deliver material efficiency would therefore be misguided and additional policy interventions to support material efficiency should be considered. © 2013 Elsevier B.V.
Resumo:
Recent years have seen enormous demand amongst policy makers for new insights from the behavioural sciences, especially neuroscience. This demand is matched by an increasing willingness on behalf of behavioural scientists to translate the policy implications of their work. But can neuroscience really help shape the governance of a nation? Or does this represent growing misuse of neuroscience to attach scientific authority to policy, plus a clutch of neuroscientists trying to overstate their findings for a taste of power?. © 2012.
Resumo:
OBJECTIVE: A standard view in health economics is that, although there is no market that determines the "prices" for health states, people can nonetheless associate health states with monetary values (or other scales, such as quality adjusted life year [QALYs] and disability adjusted life year [DALYs]). Such valuations can be used to shape health policy, and a major research challenge is to elicit such values from people; creating experimental "markets" for health states is a theoretically attractive way to address this. We explore the possibility that this framework may be fundamentally flawed-because there may not be any stable values to be revealed. Instead, perhaps people construct ad hoc values, influenced by contextual factors, such as the observed decisions of others. METHOD: The participants bid to buy relief from equally painful electrical shocks to the leg and arm in an experimental health market based on an interactive second-price auction. Thirty subjects were randomly assigned to two experimental conditions where the bids by "others" were manipulated to follow increasing or decreasing price trends for one, but not the other, pain. After the auction, a preference test asked the participants to choose which pain they prefer to experience for a longer duration. RESULTS: Players remained indifferent between the two pain-types throughout the auction. However, their bids were differentially attracted toward what others bid for each pain, with overbidding during decreasing prices and underbidding during increasing prices. CONCLUSION: Health preferences are dissociated from market prices, which are strongly referenced to others' choices. This suggests that the price of health care in a free-market has the capacity to become critically detached from people's underlying preferences.
Resumo:
Estimating the financial value of pain informs issues as diverse as the market price of analgesics, the cost-effectiveness of clinical treatments, compensation for injury, and the response to public hazards. Such valuations are assumed to reflect a stable trade-off between relief of discomfort and money. Here, using an auction-based health-market experiment, we show that the price people pay for relief of pain is strongly determined by the local context of the market, that is, by recent intensities of pain or immediately disposable income (but not overall wealth). The absence of a stable valuation metric suggests that the dynamic behavior of health markets is not predictable from the static behavior of individuals. We conclude that the results follow the dynamics of habit-formation models of economic theory, and thus, this study provides the first scientific basis for this type of preference modeling.
Resumo:
Over the last decade, research in medical science has focused on knowledge translation and diffusion of best practices to enable improved health outcomes. However, there has been less attention given to the role of policy in influencing the translation of best practice across different national contexts. This paper argues that the underlying set of public discourses of healthcare policy significantly influences its development with implications for the dissemination of best practices. Our research uses Critical Discourse Analysis to examine the policy discourses surrounding the treatment of stroke across Canada and the U.K. It focuses in specific on how concepts of knowledge translation, user empowerment, and service innovation construct different accounts of the health service in the two countries. These findings provide an important yet overlooked starting point for understanding the role of policy development in knowledge transfer and the translation of science into health practice. © 2011 Operational Research Society. All rights reserved.
Resumo:
This case study explores the interaction between domestic and foreign governmental policy on technology transfer with the goal of exploring the long-term impacts of technology transfer. Specifically, the impact of successive licensing of fighter aircraft manufacturing and design to Japan in the development of Japan's aircraft industry is reviewed. Results indicate Japan has built a domestic aircraft industry through sequential learning with foreign technology transfers from the United States, and design and production on domestic fighter aircraft. This process was facilitated by governmental policies in both Japan and the United States. Published by Elsevier B.V.
Resumo:
We quantify the conditions that might trigger wide spread adoption of alternative fuel vehicles (AFVs) to support energy policy. Empirical review shows that early adopters are heterogeneous motivated by financial benefits, environmental appeal, new technology, and vehicle reliability. A probabilistic Monte Carlo simulation model is used to assess consumer heterogeneity for early and mass market adopters. For early adopters full battery electric vehicles (BEVs) are competitive but unable to surpass diesels or hybrids due to purchase price premium and lack of charging availability. For mass adoption, simulations indicate that if the purchase price premium of a BEV closes to within 20% of an in-class internal combustion engine (ICE) vehicle, combined with a 60% increase in refuelling availability relative to the incumbent system, BEVs become competitive. But this depends on a mass market that values the fuel economy and CO2 reduction benefits associated with BEVs. We also find that the largest influence on early adoption is financial benefit rather than pro-environmental behaviour suggesting that AFVs should be marketed by appealing to economic benefits combined with pro-environmental behaviour to motivate adoption. Monte Carlo simulations combined with scenarios can give insight into diffusion dynamics for other energy demand-side technologies. © 2012 Elsevier Inc.
Resumo:
Although it is widely believed that reinforcement learning is a suitable tool for describing behavioral learning, the mechanisms by which it can be implemented in networks of spiking neurons are not fully understood. Here, we show that different learning rules emerge from a policy gradient approach depending on which features of the spike trains are assumed to influence the reward signals, i.e., depending on which neural code is in effect. We use the framework of Williams (1992) to derive learning rules for arbitrary neural codes. For illustration, we present policy-gradient rules for three different example codes - a spike count code, a spike timing code and the most general "full spike train" code - and test them on simple model problems. In addition to classical synaptic learning, we derive learning rules for intrinsic parameters that control the excitability of the neuron. The spike count learning rule has structural similarities with established Bienenstock-Cooper-Munro rules. If the distribution of the relevant spike train features belongs to the natural exponential family, the learning rules have a characteristic shape that raises interesting prediction problems.
Resumo:
A partially observable Markov decision process has been proposed as a dialogue model that enables robustness to speech recognition errors and automatic policy optimisation using reinforcement learning (RL). However, conventional RL algorithms require a very large number of dialogues, necessitating a user simulator. Recently, Gaussian processes have been shown to substantially speed up the optimisation, making it possible to learn directly from interaction with human users. However, early studies have been limited to very low dimensional spaces and the learning has exhibited convergence problems. Here we investigate learning from human interaction using the Bayesian Update of Dialogue State system. This dynamic Bayesian network based system has an optimisation space covering more than one hundred features, allowing a wide range of behaviours to be learned. Using an improved policy model and a more robust reward function, we show that stable learning can be achieved that significantly outperforms a simulator trained policy. © 2013 IEEE.
Resumo:
The global trend towards urbanization means that over half of the world's population now lives in cities. Cities use energy in different proportions to national energy use averages, typically corresponding to whether a country is industrialized or developing. Cities in industrialized countries tend to use less energy per capita than the national average while cities in developing countries use more. This paper looks at existing World Bank data in respect to urban energy consumption, the emissions inventory work done by New York City, and discusses how this data highlights the need for a focus on: energy policy for buildings in industrialized cities; masterplanning and new construction standards in developing cities; and how urban energy policy can become more effective in reducing urban greenhouse gas emissions.