51 resultados para Poblacion Normal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The normal shock wave / boundary layer interaction (normal SBLI) is important to the operation and performance of a supersonic inlet, and the normal SBLI is particularly prominent in external compression inlets. To improve our understanding of such interactions, it is helpful to make use of fundamental flows which capture the main elements of inlets, without resorting to the level of complexity and system integration associated with full-geometry inlets. In this paper, several fundamental fiow-fleld configurations have been considered as possible test cases to represent the normal SBLI aspects found in typical external compression inlets, and it was found that the spillage-diffuser more closely retains the basic flow features of an external compression inlet than the other configurations. In particular, this flow-fleld allows the normal shock Mach number as well as the amount and rate of subsonic diffusion to be all held approximately constant mid independent of the application of flow control. In addition, a survey of several external compression inlets was conducted to quantify the flow and geometric parameters of the spillage-diffuser relevant to actual inlets. The results indicated that such a flow may be especially relevant if the terminal Mach number is about 1.3 to 1.4, the confinement parameter is around 10%, the width around twice or three times the height, and with the area expansion just downstream of the shock on the conservative side of the stall limit for incompressible diffusers. © 2013 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental study on normal hole bleed in a supersonic turbulent boundary layer has been conducted. A combination of LDV, Schlieren imagery and oil flow visualization were used to provide a better understanding of the three-dimensional flow field surrounding a supersonic bleed array. Experiments were performed at Mach numbers of 1.8 and 2.5, while previously published results at Mach numbers of 1.3 and 1.5 were also incorporated. The bleed system was capable of removing up to approximately 10% of the incoming boundary layer through a tunnel-spanning array of discrete holes with diameters the same order of magnitude of boundary layer displacement thickness. Inspection of boundary layer profiles downstream of the bleed region indicates that vorticity generated by the discrete holes can have a substantial influence on changes to the boundary layer shape factor and skin friction coefficient, through modification of the lower 20% of the boundary layer. This vorticity was visualized through oil-flow visualization, and LDV measurements, showing the development of two vortices off each bleed hole, and corresponding upwash and downwash regions with far-reaching three dimensional effects. © 2013 by J. M. Oorebeek and H. Babinsky.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A number of VG configurations have been examined in a inlet relevant fiow-fleld which includes a terminal shock wave and subsequent subsonic diffuser. The flow-fleld was found to be highly sensitive to VG configuration. While the performance of one vane VG configuration was good over a wide range of streamwise positions, another quite similar vane configuration tended to perforin less well-especially when positioned further from the separation-and work is ongoing to determine the reasons behind tliis behavior. In addition, it was found that vane-type VG configurations were appreciably better at reducing separation than their micro-ramp counterparts. When combined with bleed in the centre-span region upstream of the VGs, the performance of vane type VGs was further enhanced and was the best of any configuration. © 2013 by Neil Titchener, Holger Babinsky and Eric Loth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The normal shock wave/boundary-layer interaction is important to the operation and performance of a supersonic inlet, and the normal shock wave/boundary-layer interaction is particularly prominent in external compression inlets. To improve understanding of such interactions, it is helpful to make use of fundamental flows that capture the main elements of inlets, without resorting to the level of complexity and system integration associated with full-geometry inlets. In this paper, several fundamental flowfield configurations have been considered as possible test cases to represent the normal shock wave/boundary-layer interaction aspects found in typical external compression inlets, and it was found that the spillage diffuser more closely retains the basic flow features of an external compression inlet than the other configurations. In particular, this flowfield allows the normal shock Mach number as well as the amount and rate of subsonic diffusion to all be held approximately constant and independent of the application of flow control. In addition, a survey of several external compression inlets was conducted to quantify the flow and geometric parameters of the spillage diffuser relevant to actual inlets. The results indicated that such a flow may be especially relevant if the terminal Mach number is about 1.3 to 1.4, the confinement parameter is around 10%, and the width is around twice or three times the height. In addition, the area expansion downstream of the shock should be limited to the conservative side of incipient stall based on incompressible diffusers. Copyright © 2013 by the authors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper looks at active control of the normal shock wave/turbulent boundary layer interaction (SBLI) using smart flap actuators. The actuators are manufactured by bonding piezoelectric material to an inert substrate to control the bleed/suction rate through a plenum chamber. The cavity provides communication of signals across the shock, allowing rapid thickening of the boundary layer approaching the shock, which splits into a series of weaker shocks forming a lambda shock foot, reducing wave drag. Active control allows optimum control of the interaction, as it would be capable of positioning the control region around the original shock position and control the rate of mass transfer. © 2004 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of streamwise slots on the interaction of a normal shock wave / turbulent boundary layer has been investigated experimentally at a Mach number of 1.3. The surface pressure distribution for the controlled interaction was found to be significantly smeared, featuring a distinct plateau. This was due to a change in shock structure from a typical unseparated normal shock wave boundary layer interaction to a large bifurcated Lambda type shock pattern. Boundary layer velocity measurements downstream of the slots revealed a strong spanwise variation of boundary layer properties whereas the modified shock structure was relatively twodimensional. Oil flow visualisation indicated that in the presence of slots the boundary layer surface flow was highly three dimensional and confirmed that the effect of slots was mainly due to suction and blowing similar to that for passive control with uniform surface ventilation. Three hole probe measurements confirmed that the boundary layer was three dimensional and that the slots introduced vortical motion into the flowfield. Results indicate that when applied to an aerofoil, the control device has the potential to reduce wave drag while incurring only small viscous penalties. The introduction of streamwise vorticity may also be beneficial to delay trailing edge separation and the device is thought to be capable of postponing buffet onset. © 2001 by A N Smith.