58 resultados para Permeability.
Thermal material with low curie temperature in a thermally actuated superconducting flux pump system
Resumo:
A thermally actuated flux pump is an efficient method to magnetize the high-temperature superconductor (HTS) bulk without applying a strong magnetic field. A thermal material is employed as a magnetic switch, which decides the efficiency of the system. To measure the Curie temperatures of those samples without destroying them, the nondestructive Curie temperature (NDT) measurement was developed. The Curie temperature of gadolinium (Gd) was measured by the NDT method and compared to the results from superconducting quantum interference device (SQUID). Because the SQUID tests require the sample to be cut into small piece, a constant shape of the testing sample could not be guaranteed. The demagnetizing effect was considered to remove the shape effect. The intrinsic permeability was modified from the apparent susceptibility by considering demagnetization. A thermal material with low Curie temperature, Mg 0.15Cu0.15Zn0.7Ti0.04Fe 1.96O4, was synthesized and its performance was tested and compared with previous thermal materials. Comparisons of three thermal materials, including the Curie temperature and the permeability, will be detailed in the paper. © 2002-2011 IEEE.
Resumo:
It is shown that filling the holes of a drilled bulk high-temperature superconductor (HTS) with a soft ferromagnetic powder enhances its trapping properties. The magnetic properties of the trapped field magnet are characterized by Hall probe mapping and magnetization measurements. This analysis is completed by a numerical model based on a 3D finite-element method where the conductivity of the superconducting material is described by a power law while the permeability of the ferromagnetic material is fixed to a given value and is considered uniform. Numerical results support the experimental observations. In particular, they confirm the increase of trapped flux that is observed with Hall probe mapping after impregnation. © 2011 IOP Publishing Ltd.
Resumo:
Many bacteria on earth exist in surface-attached communities known as biofilms. These films are responsible for manifold problems, including hospital-acquired infections and biofouling, but they can also be beneficial. Biofilm growth depends on the transport of nutrients and waste, for which diffusion is thought to be the main source of transport. However, diffusion is ineffective for transport over large distances and thus should limit growth. Nevertheless, biofilms can grow to be very large. Here we report the presence of a remarkable network of well-defined channels that form in wild-type Bacillus subtilis biofilms and provide a system for enhanced transport. We observe that these channels have high permeability to liquid flow and facilitate the transport of liquid through the biofilm. In addition, we find that spatial variations in evaporative flux from the surface of these biofilms provide a driving force for the flow of liquid in the channels. These channels offer a remarkably simple system for liquid transport, and their discovery provides insight into the physiology and growth of biofilms.
Resumo:
We have conducted triaxial deformation experiments along different loading paths on prism sediments from the Nankai Trough. Different load paths of isotropic loading, uniaxial strain loading, triaxial compression (at constant confining pressure, Pc), undrained Pc reduction, drained Pc reduction, and triaxial unloading at constant Pc, were used to understand the evolution of mechanical and hydraulic properties under complicated stress states and loading histories in accretionary subduction zones. Five deformation experiments were conducted on three sediment core samples for the Nankai prism, specifically from older accreted sediments at the forearc basin, underthrust slope sediments beneath the megasplay fault, and overthrust Upper Shikoku Basin sediments along the frontal thrust. Yield envelopes for each sample were constructed based on the stress paths of Pc-reduction using the modified Cam-clay model, and in situ stress states of the prism were constrained using the results from the other load paths and accounting for horizontal stress. Results suggest that the sediments in the vicinity of the megasplay fault and frontal thrust are highly overconsolidated, and thus likely to deform brittle rather than ductile. The porosity of sediments decreases as the yield envelope expands, while the reduction in permeability mainly depends on the effective mean stress before yield, and the differential stress after yield. An improved understanding of sediment yield strength and hydromechanical properties along different load paths is necessary to treat accurately the coupling of deformation and fluid flow in accretionary subduction zones. © 2012 American Geophysical Union All Rights Reserved.
Resumo:
This paper analyzes reaction and thermal front development in porous reservoirs with reacting flows, such as those encountered in shale oil extraction. A set of dimensionless parameters and a 3D code are developed in order to investigate the important physical and chemical variables of such reservoirs when heated by in situ methods. This contribution builds on a 1D model developed for the precursor study to this work. Theory necessary for this study is presented, namely shale decomposition chemical mechanisms, governing equations for multiphase flow in porous media and necessary closure models. Plotting the ratio of the thermal wave speed to the fluid speed allows one to infer that the reaction wave front ends where this ratio is at a minimum. The reaction front follows the thermal front closely, thus allowing assumptions to be made about the extent of decomposition solely by looking at thermal wave progression. Furthermore, this sensitivity analysis showed that a certain minimum permeability is required in order to ensure the formation of a traveling thermal wave. It was found that by studying the non-dimensional governing parameters of the system one can ascribe characteristic values for these parameters for given initial and boundary conditions. This allows one to roughly predict the performance of a particular method on a particular reservoir given approximate values for initial and boundary conditions. Channelling and flow blockage due to carbon residue buildup impeded each method's performance. Blockage was found to be a result of imbalanced heating. Copyright 2012, Society of Petroleum Engineers.
Resumo:
Relatively new in the UK, soil mix technology applied to the in-situ remediation of contaminated land involves the use of mixing tools and additives to construct permeable reactive in-ground barriers and low-permeability containment walls and for hot-spot soil treatment by stabilisation/ solidification. It is a cost effective and versatile approach with numerous environmental advantages. Further commercial advantages can be realised by combining this with ground improvement through the development of a single integrated soil mix technology system which is the core objective of Project SMiRT (Soil Mix Remediation Technology). This is a large UK-based R&D project involving academia-industry collaboration with a number of tasks including equipment development, laboratory treatability studies, field trials, stakeholder consultation and dissemination activities. This paper presents aspects of project SMiRT relating to the laboratory treatability study work leading to the design of the field trials. © 2012 American Society of Civil Engineers.
Resumo:
Portland cement (PC) is the most widely used binder for ground improvement. However, there are significant environmental impacts associated with its production in terms of high energy consumption and CO2 emissions. Hence, the use of industrial by-products materials or new low-carbon footprint alternative cements has been encouraged. Ground granulated blastfurnace slag (GGBS), a by-product of the steel industry, has been successfully used for such an application, usually activated with an alkali such as lime or PC. In this study the use of MgO as a novel activator for GGBS in ground improvement of soft soils is addressed and its performance was compared to the above two conventional activators as well as PC alone. The GGBS:activator ratio used in this study was 9:1. A range of tests was performed at three curing periods (7, 28 and 90 days), including unconfined compressive strength (UCS), permeability and microstructure analysis. The results show that the MgO performed as the most efficient activator yielding the highest strength and the lowest permeability indicating a very high stabilisation efficiency of the system. © 2012 American Society of Civil Engineers.
Resumo:
Orthopedic tissue engineering requires biomaterials with robust mechanics as well as adequate porosity and permeability to support cell motility, proliferation, and new extracellular matrix (ECM) synthesis. While collagen-glycosaminoglycan (CG) scaffolds have been developed for a range of tissue engineering applications, they exhibit poor mechanical properties. Building on previous work in our lab that described composite CG biomaterials containing a porous scaffold core and nonporous CG membrane shell inspired by mechanically efficient core-shell composites in nature, this study explores an approach to improve cellular infiltration and metabolic health within these core-shell composites. We use indentation analyses to demonstrate that CG membranes, while less permeable than porous CG scaffolds, show similar permeability to dense materials such as small intestine submucosa (SIS). We also describe a simple method to fabricate CG membranes with organized arrays of microscale perforations. We demonstrate that perforated membranes support improved tenocyte migration into CG scaffolds, and that migration is enhanced by platelet-derived growth factor BB-mediated chemotaxis. CG core-shell composites fabricated with perforated membranes display scaffold-membrane integration with significantly improved tensile properties compared to scaffolds without membrane shells. Finally, we show that perforated membrane-scaffold composites support sustained tenocyte metabolic activity as well as improved cell infiltration and reduced expression of hypoxia-inducible factor 1α compared to composites with nonperforated membranes. These results will guide the design of improved biomaterials for tendon repair that are mechanically competent while also supporting infiltration of exogenous cells and other extrinsic mediators of wound healing.
Resumo:
Micro-nano bubbles (MNBs) are tiny bubbles with diameters on the order of micrometers and nanometers, showing great potential in environmental remediation. However, the application is only in the beginning stages and remains to be intensively studied. In order to explore the possible use of MNBs in groundwater contaminant removal, this study focuses on the transport of MNBs in porous media and dissolution processes. The bubble diameter distribution was obtained under different conditions by a laser particle analyzer. The permeability of MNB water through sand was compared with that of air-free water. Moreover, the mass transfer features of dissolved oxygen in water with MNBs were studied. The results show that the bubble diameter distribution is influenced by the surfactant concentration in the water. The existence of MNBs in pore water has no impact on the hydraulic conductivity of sand. Furthermore, the dissolved oxygen (DO) in water is greatly increased by the MNBs, which will predictably improve the aerobic bioremediation of groundwater. The results are meaningful and instructive in the further study of MNB research and applications in groundwater bioremediation.
Resumo:
Although self compacting concrete (SCC) is currently used in many countries, there is a fundamental lack of the intrinsic durability of the material itself. This article presents the outcomes from a research program on principal indicators that define the durability of SCC (sorptivity, porosity and chloride ion permeability) and compares these indicators with the corresponding parameters of conventional concrete. The results show, for the first time, that there is a correlation between the various durability indicators for the specific filler additives used in the mix designs incorporated in this paper. Such a correlation may be used to assess the durability of SCC without the need to rely on time consuming artificial weathering experimental procedures. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
This paper addresses the use of ground granulated blast furnace slag (GGBS) and reactive magnesia (MgO) blends for soil stabilization, comparing them with GGBS-lime blends and Portland cement (PC) for enhanced technical performance. A range of tests were conducted to investigate the properties of stabilized soils, including unconfined compressive strength (UCS), permeability, and microstructural analyses by using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The influence of GGBS:MgO ratio, binder content, soil type, and curing period were addressed. The UCS results revealed that GGBS-MgO was more efficient than GGBS-lime as a binder for soil stabilization, with an optimum MgO content in the range of 5-20% of the blends content, varying with binder content and curing age. The 28-day UCS values of the optimum GGBS-MgO mixes were up to almost four times higher than that of corresponding PC mixes. The microstructural analyses showed the hydrotalcite was produced during the GGBS hydration activated by MgO, although the main hydration products of the GGBS-MgO stabilized soils were similar to those of PC. © 2014 American Society of Civil Engineers.
Resumo:
Although cementation is a widely recognized solidification/ stabilization process for immobilisation of Intermediate Level Radioactive Waste (ILRW), the low resistance to hyperalkaline pore waters compromises the effectiveness of the process when Portland Cement (PC) is employed. Moreover the manufacture of PC is responsible for significant CO2 emissions. In this context, low pH cements are environmentally more suitable and have emerged as a potential alternative for obtaining secure waste forms. This paper summarises the achievements on development of low-pH cements and the challenges of using these new materials for the ILRW immobilisation. The performance of waste forms is also discussed in terms of radionuclides release. Reactive magnesium oxide and magnesium phosphate cements are emphasised as they feature important advantages such as consumption of available constituents for controlling acid-base reactions, reduced permeability and higher density. Additionally, in order to identify new opportunities for study, the long-term modelling approach is also briefly discussed. Copyright © 2013 by ASME.
Resumo:
The possibility of enhancing the frequency performance of electrochemical capacitors by tailoring the nanostructure of the carbon electrode to increase electrolyte permeability is demonstrated. Highly porous, vertically oriented carbon electrodes which are in direct electrical contact with the metallic current collector are produced via MPECVD growth on metal foils. The resulting structure has a capacitance and frequency performance between that of an electrolytic capacitor and an electrochemical capacitor. Fully packaged devices are produced on Ni and Cu current collectors and performance compared to state-of-the-art electrochemical capacitors and electrolytic capacitors. The extension of capacitive behavior to the AC regime (100 Hz) opens up an avenue for a number of new applications where physical volume of the capacitor may be significantly reduced. © 2014 Pritesh Hiralal et al.