67 resultados para POROUS CERAMICS


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of high performance ceramics and ceramic composites often relies on assumptions about their behaviour during loading and at failure. A crucial influence on the mechanical properties of these materials is the degree of sub-critical cracking, which post mortem investigations cannot adequately reveal. Hence a clear picture of the dynamic micromechanisms of cracking is required if applications of fracture and damage mechanics to theoretical models is to be meaningful.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrochemical investigations were conducted of the effect of potential on the luminescence of porous silico (PS). The use of liquid contacts allows the potential to be controlled during studies of the photoluminescence (PL) and electroluminescence (EI). The PL and EL of PS samples prepared from n-type substrates is considered. To obtain luminescence from such PS it is necessary to generate holes in the valence band. This is achieved by either photoexcitation or an electrochemical process involving the reduction of persulfate. This paper describes the investigations of the effect of potential on the PL and EL of PS. A mechanism of 'potential tuning' based on electron occupancy and Auger quenching is then proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Rolls-Royce Integrated-Planar Solid Oxide Fuel Cell (IP-SOFC) consists of ceramic modules which have electrochemical cells printed on the outer surfaces. The cathodes are the outermost layer of each cell and are supplied with oxygen from air flowing over the outside of the module. The anodes are in direct contact with the ceramic structure and are supplied with fuel from internal gas channels. Natural gas is reformed into hydrogen for use by the fuel cells in a separate reformer module of similar design except that the fuel cells are replaced by a reforming catalyst layer. The performance of the modules is intrinsically linked to the behaviour of the gas flows within their porous structures. Because the porous layers are very thin, a one-dimensional flow model provides a good representation of the flow property variations between fuel channel and fuel cell or reforming catalyst. The multi-component convective-diffusive flows are simulated using a new theory of flow in porous material, the Cylindrical Pore Interpolation Model. The effects of the catalysed methane reforming and water-gas shift chemical reactions are also considered using appropriate kinetic models. It is found that the shift reaction, which is catalysed by the anode material, has certain beneficial effects on the fuel cell module performance. In the reformer module it was found that the flow resistance of the porous support structure makes it difficult to sustain a high methane conversion rate. Although the analysis is based on IP-SOFC geometry, the modelling approach and general conclusions are applicable to other types of SOFC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ink-jet printing of nano-metallic colloidal fluids on to porous media such as coated papers has become a viable method to produce conductive tracks for low-cost, disposable printed electronic devices. However, the formation of well-defined and functional tracks on an absorbing surface is controlled by the drop imbibition dynamics in addition to the well-studied post-impact drop spreading behavior. This study represents the first investigation of the real-time imbibition of ink-jet deposited nano-Cu colloid drops on to coated paper substrates. In addition, the same ink was deposited on to a non-porous polymer surface as a control substrate. By using high-speed video imaging to capture the deposition of ink-jet drops, the time-scales of drop spreading and imbibition were quantified and compared with model predictions. The influences of the coating pore size on the bulk absorption rate and nano-Cu particle distribution have also been studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The possibility of using acoustic Bessel beams to produce an axial pulling force on porous particles is examined in an exact manner. The mathematical model utilizes the appropriate partial-wave expansion method in spherical coordinates, while Biot's model is used to describe the wave motion within the poroelastic medium. Of particular interest here is to examine the feasibility of using Bessel beams for (a) acoustic manipulation of fine porous particles and (b) suppression of particle resonances. To verify the viability of the technique, the radiation force and scattering form-function are calculated for aluminum and silica foams at various porosities. Inspection of the results has shown that acoustic manipulation of low porosity (<0.3) spheres is similar to that of solid elastic spheres, but this behavior significantly changes at higher porosities. Results have also shown a strong correlation between the backscattered form-function and the regions of negative radiation force. It has also been observed that the high-order resonances of the particle can be effectively suppressed by choosing the beam conical angle such that the acoustic contribution from that particular mode vanishes. This investigation may be helpful in the development of acoustic tweezers for manipulation of micro-porous drug delivery carrier and contrast agents.