128 resultados para Optimal control design


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper we examine triggering in a simple linearly-stable thermoacoustic system using techniques from flow instability and optimal control. Firstly, for a noiseless system, we find the initial states that have highest energy growth over given times and from given energies. Secondly, by varying the initial energy, we find the lowest energy that just triggers to a stable periodic solution. We show that the corresponding initial state grows first towards an unstable periodic solution and, from there, to the stable periodic solution. This exploits linear transient growth, which arises due to nonnormality in the governing equations and is directly analogous to bypass transition to turbulence. Thirdly, we introduce noise that has similar spectral characteristics to this initial state. We show that, when triggering from low noise levels, the system grows to high amplitude self-sustained oscillations by first growing towards the unstable periodic solution of the noiseless system. This helps to explain the experimental observation that linearly-stable systems can trigger to self-sustained oscillations even with low background noise. © 2010 by University of Cambridge. Published by the American Institute of Aeronautics and Astronautics, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper deals with the experimental evaluation of a flow analysis system based on the integration between an under-resolved Navier-Stokes simulation and experimental measurements with the mechanism of feedback (referred to as Measurement-Integrated simulation), applied to the case of a planar turbulent co-flowing jet. The experiments are performed with inner-to-outer-jet velocity ratio around 2 and the Reynolds number based on the inner-jet heights about 10000. The measurement system is a high-speed PIV, which provides time-resolved data of the flow-field, on a field of view which extends to 20 jet heights downstream the jet outlet. The experimental data can thus be used both for providing the feedback data for the simulations and for validation of the MI-simulations over a wide region. The effect of reduced data-rate and spatial extent of the feedback (i.e. measurements are not available at each simulation time-step or discretization point) was investigated. At first simulations were run with full information in order to obtain an upper limit of the MI-simulations performance. The results show the potential of this methodology of reproducing first and second order statistics of the turbulent flow with good accuracy. Then, to deal with the reduced data different feedback strategies were tested. It was found that for small data-rate reduction the results are basically equivalent to the case of full-information feedback but as the feedback data-rate is reduced further the error increases and tend to be localized in regions of high turbulent activity. Moreover, it is found that the spatial distribution of the error looks qualitatively different for different feedback strategies. Feedback gain distributions calculated by optimal control theory are presented and proposed as a mean to make it possible to perform MI-simulations based on localized measurements only. So far, we have not been able to low error between measurements and simulations by using these gain distributions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Several authors have proposed algorithms for approximate explicit MPC [1],[2],[3]. These algorithms have in common that they develop a stability criterion for approximate explicit MPC that require the approximate cost function to be within a certain distance from the optimal cost function. In this paper, stability is instead ascertained by considering only the cost function of the approximate MPC. If a region of the state space is found where the cost function is not decreasing, this indicates that an improved approximation (to the optimal control) is required in that region. If the approximate cost function is decreasing everywhere, no further refinement of the approximate MPC is necessary, since stability is guaranteed. ©2009 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper extends the authors' earlier work which adapted robust multiplexed MPC for application to distributed control of multi-agent systems with non-interacting dynamics and coupled constraint sets in the presence of persistent unknown, but bounded disturbances. Specifically, we propose exploiting the single agent update nature of the multiplexed approach, and fix the update sequence to enable input move-blocking and increased discretisation rates. This permits a higher rate of individual policy update to be achieved, whilst incurring no additional computational cost in the corresponding optimal control problems to be solved. A disturbance feedback policy is included between updates to facilitate finding feasible solutions. The new formulation inherits the property of rapid response to disturbances from multiplexing the control and numerical results show that fixing the update sequence does not incur any loss in performance. © 2011 IFAC.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Zeno behavior is a dynamic phenomenon unique to hybrid systems in which an infinite number of discrete transitions occurs in a finite amount of time. This behavior commonly arises in mechanical systems undergoing impacts and optimal control problems, but its characterization for general hybrid systems is not completely understood. The goal of this paper is to develop a stability theory for Zeno hybrid systems that parallels classical Lyapunov theory; that is, we present Lyapunov-like sufficient conditions for Zeno behavior obtained by mapping solutions of complex hybrid systems to solutions of simpler Zeno hybrid systems defined on the first quadrant of the plane. These conditions are applied to Lagrangian hybrid systems, which model mechanical systems undergoing impacts, yielding simple sufficient conditions for Zeno behavior. Finally, the results are applied to robotic bipedal walking. © 2012 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The global stabilization of a class of feedforward systems having an exponentially unstable Jacobian linearization is achieved by a high-gain feedback saturated at a low level. The control law forces the derivatives of the state variables to small values along the closed-loop trajectories. This "slow control" design is illustrated with a benchmark example and its limitations are emphasized. © 1999 Elsevier Science B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The problem of calculating the minimum lap or maneuver time of a nonlinear vehicle, which is linearized at each time step, is formulated as a convex optimization problem. The formulation provides an alternative to previously used quasi-steady-state analysis or nonlinear optimization. Key steps are: the use of model predictive control; expressing the minimum time problem as one of maximizing distance traveled along the track centerline; and linearizing the track and vehicle trajectories by expressing them as small displacements from a fixed reference. A consequence of linearizing the vehicle dynamics is that nonoptimal steering control action can be generated, but attention to the constraints and the cost function minimizes the effect. Optimal control actions and vehicle responses for a 90 deg bend are presented and compared to the nonconvex nonlinear programming solution. Copyright © 2013 by ASME.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We propose a constructive control design for stabilization of non-periodic trajectories of underactuated robots. An important example of such a system is an underactuated "dynamic walking" biped robot traversing rough or uneven terrain. The stabilization problem is inherently challenging due to the nonlinearity, open-loop instability, hybrid (impact) dynamics, and target motions which are not known in advance. The proposed technique is to compute a transverse linearization about the desired motion: a linear impulsive system which locally represents "transversal" dynamics about a target trajectory. This system is then exponentially stabilized using a modified receding-horizon control design, providing exponential orbital stability of the target trajectory of the original nonlinear system. The proposed method is experimentally verified using a compass-gait walker: a two-degree-of-freedom biped with hip actuation but pointed stilt-like feet. The technique is, however, very general and can be applied to a wide variety of hybrid nonlinear systems. © The Author(s) 2011.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We propose a constructive control design for stabilization of non-periodic trajectories of underactuated mechanical systems. An important example of such a system is an underactuated "dynamic walking" biped robot walking over rough terrain. The proposed technique is to compute a transverse linearization about the desired motion: a linear impulsive system which locally represents dynamics about a target trajectory. This system is then exponentially stabilized using a modified receding-horizon control design. The proposed method is experimentally verified using a compass-gait walker: a two-degree-of-freedom biped with hip actuation but pointed stilt-like feet. The technique is, however, very general and can be applied to higher degree-of-freedom robots over arbitrary terrain and other impulsive mechanical systems. © 2011 Springer-Verlag.