47 resultados para Open space residential design (OSRD)
Resumo:
A multi-objective design optimisation study has been carried out with the objectives to improve the overall efficiency of the device and to reduce the fuel consumption for the proposed micro-scale combustor design configuration. In a previous study we identified the topology of the combustion chamber that produced improved behaviour of the device in terms of the above design criteria. We now extend our design approach, and we propose a new configuration by the addition of a micro-cooling channel that will improve the thermal behaviour of the design as previously suggested in literature. Our initial numerical results revealed an improvement of 2.6% in the combustion efficiency when we applied the micro-cooling channel to an optimum design configuration we identified from our earlier multi-objective optimisation study, and under the same operating conditions. The computational modelling of the combustion process is implemented in the commercial computational fluid dynamics package ANSYS-CFX using Finite Rate Chemistry and a single step hydrogen-air reaction. With this model we try to balance good accuracy of the combustion solution and at the same time practicality within the context of an optimisation process. The whole design system comprises also the ANSYS-ICEM CFD package for the automatic geometry and mesh generation and the Multi-Objective Tabu Search algorithm for the design space exploration. We model the design problem with 5 geometrical parameters and 3 operational parameters subject to 5 design constraints that secure practicality and feasibility of the new optimum design configurations. The final results demonstrate the reliability and efficiency of the developed computational design system and most importantly we assess the practicality and manufacturability of the revealed optimum design configurations of micro-combustor devices. Copyright © 2013 by ASME.
Resumo:
Toolpath design in spinning is an open ended problem, with a large number of solutions, and remains an art acquired by practice. To be able to specify a toolpath without the need for experimental trials, further understanding of the process mechanics Is required. At the moment, the mechanics of the process Is not completely understood, due to the complex deformation and because long solution times required for accurate numerical modelling of the process Inhibit detailed study. This paper proposes and applies a new approach to modelling the process and aims to contribute to the understanding of process mechanics, In particular with respect to the mechanisms of failure and and to apply this understanding for toolpath design In spinning. A new approach to numerical modelling Is proposed and applied to Investigate the process. The findings suggest that there are two different causes and two different modes of wrinkling In spinning, depending on the stage In the process and direction of roller movement. A simple test Is performed to estimate the limits of wrinkling and provide a guideline for toolpath design In a typical spinning process. The results show that the required toolpath geometry in the early stages of the process is different from that In later stages. © 2011 Wiley-VCH Verlag GmbH & Co. KGaA. Weinheim.