54 resultados para Normal Rats


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experiments have been conducted to examine the mechanisms behind the coupling between corner separation and centreline separation when holding a normal shock in a rectangular channel. The study has focused on a M ∞ = 1.5 normal shock held in a wind tunnel with a parallel rectangular cross-section. The primary mechanism explaining the link between the corner separation size and the centreline separation appears to be the generation of compression waves which act to smear the adverse pressure gradient imposed upon other parts of the flow. In addition, the origin of the λ-foot leading leg appears to be depended upon the size of the corner separations. Experimental results indicate that the alteration of the λ-region, which occurs in the supersonic portion of the SBLI, is more important than the generation of any blockage in the subsonic region downstream of the shock wave. Copyright © 2012 by H. Babinsky, D.M.F. Burton.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The normal shock wave / boundary layer interaction (normal SBLI) is important to the operation and performance of a supersonic inlet, and the normal SBLI is particularly prominent in external compression inlets. To improve our understanding of such interactions, it is helpful to make use of fundamental flows which capture the main elements of inlets, without resorting to the level of complexity and system integration associated with full-geometry inlets. In this paper, several fundamental fiow-fleld configurations have been considered as possible test cases to represent the normal SBLI aspects found in typical external compression inlets, and it was found that the spillage-diffuser more closely retains the basic flow features of an external compression inlet than the other configurations. In particular, this flow-fleld allows the normal shock Mach number as well as the amount and rate of subsonic diffusion to be all held approximately constant mid independent of the application of flow control. In addition, a survey of several external compression inlets was conducted to quantify the flow and geometric parameters of the spillage-diffuser relevant to actual inlets. The results indicated that such a flow may be especially relevant if the terminal Mach number is about 1.3 to 1.4, the confinement parameter is around 10%, the width around twice or three times the height, and with the area expansion just downstream of the shock on the conservative side of the stall limit for incompressible diffusers. © 2013 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental study on normal hole bleed in a supersonic turbulent boundary layer has been conducted. A combination of LDV, Schlieren imagery and oil flow visualization were used to provide a better understanding of the three-dimensional flow field surrounding a supersonic bleed array. Experiments were performed at Mach numbers of 1.8 and 2.5, while previously published results at Mach numbers of 1.3 and 1.5 were also incorporated. The bleed system was capable of removing up to approximately 10% of the incoming boundary layer through a tunnel-spanning array of discrete holes with diameters the same order of magnitude of boundary layer displacement thickness. Inspection of boundary layer profiles downstream of the bleed region indicates that vorticity generated by the discrete holes can have a substantial influence on changes to the boundary layer shape factor and skin friction coefficient, through modification of the lower 20% of the boundary layer. This vorticity was visualized through oil-flow visualization, and LDV measurements, showing the development of two vortices off each bleed hole, and corresponding upwash and downwash regions with far-reaching three dimensional effects. © 2013 by J. M. Oorebeek and H. Babinsky.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A number of VG configurations have been examined in a inlet relevant fiow-fleld which includes a terminal shock wave and subsequent subsonic diffuser. The flow-fleld was found to be highly sensitive to VG configuration. While the performance of one vane VG configuration was good over a wide range of streamwise positions, another quite similar vane configuration tended to perforin less well-especially when positioned further from the separation-and work is ongoing to determine the reasons behind tliis behavior. In addition, it was found that vane-type VG configurations were appreciably better at reducing separation than their micro-ramp counterparts. When combined with bleed in the centre-span region upstream of the VGs, the performance of vane type VGs was further enhanced and was the best of any configuration. © 2013 by Neil Titchener, Holger Babinsky and Eric Loth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The normal shock wave/boundary-layer interaction is important to the operation and performance of a supersonic inlet, and the normal shock wave/boundary-layer interaction is particularly prominent in external compression inlets. To improve understanding of such interactions, it is helpful to make use of fundamental flows that capture the main elements of inlets, without resorting to the level of complexity and system integration associated with full-geometry inlets. In this paper, several fundamental flowfield configurations have been considered as possible test cases to represent the normal shock wave/boundary-layer interaction aspects found in typical external compression inlets, and it was found that the spillage diffuser more closely retains the basic flow features of an external compression inlet than the other configurations. In particular, this flowfield allows the normal shock Mach number as well as the amount and rate of subsonic diffusion to all be held approximately constant and independent of the application of flow control. In addition, a survey of several external compression inlets was conducted to quantify the flow and geometric parameters of the spillage diffuser relevant to actual inlets. The results indicated that such a flow may be especially relevant if the terminal Mach number is about 1.3 to 1.4, the confinement parameter is around 10%, and the width is around twice or three times the height. In addition, the area expansion downstream of the shock should be limited to the conservative side of incipient stall based on incompressible diffusers. Copyright © 2013 by the authors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Neuronal migration, the process by which neurons migrate from their place of origin to their final position in the brain, is a central process for normal brain development and function. Advances in experimental techniques have revealed much about many of the molecular components involved in this process. Notwithstanding these advances, how the molecular machinery works together to govern the migration process has yet to be fully understood. Here we present a computational model of neuronal migration, in which four key molecular entities, Lis1, DCX, Reelin and GABA, form a molecular program that mediates the migration process. RESULTS: The model simulated the dynamic migration process, consistent with in-vivo observations of morphological, cellular and population-level phenomena. Specifically, the model reproduced migration phases, cellular dynamics and population distributions that concur with experimental observations in normal neuronal development. We tested the model under reduced activity of Lis1 and DCX and found an aberrant development similar to observations in Lis1 and DCX silencing expression experiments. Analysis of the model gave rise to unforeseen insights that could guide future experimental study. Specifically: (1) the model revealed the possibility that under conditions of Lis1 reduced expression, neurons experience an oscillatory neuron-glial association prior to the multipolar stage; and (2) we hypothesized that observed morphology variations in rats and mice may be explained by a single difference in the way that Lis1 and DCX stimulate bipolar motility. From this we make the following predictions: (1) under reduced Lis1 and enhanced DCX expression, we predict a reduced bipolar migration in rats, and (2) under enhanced DCX expression in mice we predict a normal or a higher bipolar migration. CONCLUSIONS: We present here a system-wide computational model of neuronal migration that integrates theory and data within a precise, testable framework. Our model accounts for a range of observable behaviors and affords a computational framework to study aspects of neuronal migration as a complex process that is driven by a relatively simple molecular program. Analysis of the model generated new hypotheses and yet unobserved phenomena that may guide future experimental studies. This paper thus reports a first step toward a comprehensive in-silico model of neuronal migration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper looks at active control of the normal shock wave/turbulent boundary layer interaction (SBLI) using smart flap actuators. The actuators are manufactured by bonding piezoelectric material to an inert substrate to control the bleed/suction rate through a plenum chamber. The cavity provides communication of signals across the shock, allowing rapid thickening of the boundary layer approaching the shock, which splits into a series of weaker shocks forming a lambda shock foot, reducing wave drag. Active control allows optimum control of the interaction, as it would be capable of positioning the control region around the original shock position and control the rate of mass transfer. © 2004 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of streamwise slots on the interaction of a normal shock wave / turbulent boundary layer has been investigated experimentally at a Mach number of 1.3. The surface pressure distribution for the controlled interaction was found to be significantly smeared, featuring a distinct plateau. This was due to a change in shock structure from a typical unseparated normal shock wave boundary layer interaction to a large bifurcated Lambda type shock pattern. Boundary layer velocity measurements downstream of the slots revealed a strong spanwise variation of boundary layer properties whereas the modified shock structure was relatively twodimensional. Oil flow visualisation indicated that in the presence of slots the boundary layer surface flow was highly three dimensional and confirmed that the effect of slots was mainly due to suction and blowing similar to that for passive control with uniform surface ventilation. Three hole probe measurements confirmed that the boundary layer was three dimensional and that the slots introduced vortical motion into the flowfield. Results indicate that when applied to an aerofoil, the control device has the potential to reduce wave drag while incurring only small viscous penalties. The introduction of streamwise vorticity may also be beneficial to delay trailing edge separation and the device is thought to be capable of postponing buffet onset. © 2001 by A N Smith.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is still not known how the 'rudimentary' movements of fetuses and infants are transformed into the coordinated, flexible and adaptive movements of adults. In addressing this important issue, we consider a behavior that has been perennially viewed as a functionless by-product of a dreaming brain: the jerky limb movements called myoclonic twitches. Recent work has identified the neural mechanisms that produce twitching as well as those that convey sensory feedback from twitching limbs to the spinal cord and brain. In turn, these mechanistic insights have helped inspire new ideas about the functional roles that twitching might play in the self-organization of spinal and supraspinal sensorimotor circuits. Striking support for these ideas is coming from the field of developmental robotics: when twitches are mimicked in robot models of the musculoskeletal system, the basic neural circuitry undergoes self-organization. Mutually inspired biological and synthetic approaches promise not only to produce better robots, but also to solve fundamental problems concerning the developmental origins of sensorimotor maps in the spinal cord and brain.