76 resultados para Non-linear anisotropic diffusion
Resumo:
Graphene is in the focus of research due to its unique electronic and optical properties. Intrinsic graphene is a zero gap semiconductor with a linear dispersion relation for E-k leading to zero-effective-mass electrons and holes described by Fermi-Dirac theory. Since pristine graphene has no bandgap no photoluminescence would be expected. However, recently several groups showed non-linear photoluminescence from pristine graphene putting forward different physical models explaining this remarkable effect [1-3]. © 2011 IEEE.
Resumo:
The Chinese Tam-Tam exhibits non-linear behavior in its vibro-acoustic response. The frequency content of the response during free, unforced vibration smoothly changes, with energy being progressively smeared out over a greater bandwidth with time. This is used as a motivating case for the general study of the phenomenon of energy cascading through weak nonlinearity. Numerical models based upon the Fermi-Pasta-Ulam system of non-linearly coupled oscillators, modified with the addition of damping, have been developed. These were used to study the response of ensembles of systems with randomized natural frequencies. Results from simulations will be presented here. For un-damped systems, individual ensemble members exhibit cyclical energy exchange between linear modes, but the ensemble average displays a steady state. For the ensemble response of damped systems, lightly damped modes can exhibit an effective damping which is higher than predicated by linear theory. The presence of a non-linearity provides a path for energy flow to other modes, increasing the apparent damping spectrum at some frequencies and reducing it at others. The target of this work is a model revealing the governing parameters of a generic system of this type and leading to predictions of the ensemble response.