72 resultados para NATURAL AUTOANTIBODIES
Conditional Moment Closure/Large Eddy Simulation of the Delft-III Natural Gas Non-premixed Jet Flame
Resumo:
The natural ventilation of a building, flanked by others forming urban canyons and driven by the combined forces of wind and thermal buoyancy, has been studied experimentally at small scale. The aim was to improve our understanding of the effect of the urban canyon geometry on passive building ventilation. The steady ventilation of an isolated building was observed to change dramatically, both in terms of the thermal stratification and airflow rate, when placed within the confines of urban canyons. The ventilation flows and internal stratifications observed at small scale are presented for a range of canyon widths (building densities) and wind speeds. Two typical opening arrangements are considered. Flanking an otherwise isolated building with others of similar geometry as in a typical urban canyon was shown to reverse the effect of wind on the thermally-driven ventilation. As a consequence, neglecting the surrounding geometry when designing naturally-ventilated buildings may result in poor ventilation. Further implications are discussed.
Resumo:
The three effectiveness measures based on the ability of a flow to flush buoyancy from a ventilated space proposed by Coffey and Hunt [Ventilation effectiveness measures based on heat removal-part 1. Definitions. Building and Environment, in press, doi:10.1016/j.buildenv.2006.03.016.] are applied to assess and compare two fundamental natural ventilation flows. We focus on the limiting cases of passive displacement and passive mixing ventilation flows during transient conditions. These transient flows occur when, for example, heat is purged from a building at night. Whilst it is widely recognised that mixing flows are less efficient at purging heat than displacement flows, our results indicate that, when a particular zone of a room is considered, displacement ventilation can result in lower effectiveness than mixing ventilation. When a room is considered as a whole, displacement ventilation yields higher effectiveness than mixing ventilation and we quantify these differences in terms of the geometry of the space and opening area. The proposed theoretical predictions are compared with effectiveness deduced from measurements made during laboratory experiments and show good agreement. © 2006 Elsevier Ltd. All rights reserved.
Resumo:
We compare natural ventilation flows established by a range of heat source distributions at floor level. Both evenly distributed and highly localised line and point source distributions are considered. We demonstrate that modelling the ventilation flow driven by a uniformly distributed heat source is equivalent to the flow driven by a large number of localised sources. A model is developed for the transient flow development in a room with a uniform heat distribution and is compared with existing models for localised buoyancy inputs. For large vent areas the flow driven by localised heat sources reaches a steady state more rapidly than the uniformly distributed case. For small vent areas there is little difference in the transient development times. Our transient model is then extended to consider the time taken to flush a neutrally buoyant pollutant from a naturally ventilated room. Again comparisons are drawn between uniform and localised (point and line) heat source geometries. It is demonstrated that for large vent areas a uniform heat distribution provides the fastest flushing. However, for smaller vent areas, localised heat sources produce the fastest flushing. These results are used to suggest a definition for the term 'natural ventilation efficiency', and a model is developed to estimate this efficiency as a function of the room and heat source geometries. © 2006 Elsevier Ltd. All rights reserved.
Resumo:
The transient natural ventilation of an enclosure through vents whose areas vary linearly with time is modelled theoretically. Both displacement and mixing flows are examined and analytical solutions developed. Predictions are presented for the ventilation of a typical office building and compared to existing constant vent area model predictions based on openings of the same average area. The predictions suggest that if the average vent areas are equal in the timedependent and constant area models, the overall time required to ventilate the enclosure is not affected. However, the rate at which heat is removed from the enclosure depends on the initial opening areas and the expansion rates/durations.
Resumo:
We examine the time taken to flush pollutants from a naturally ventilated room. A simple theoretical model is developed to predict the time taken for neutrally-buoyant pollutants to be removed from a room by a flow driven by localised heat inputs; both line and point heat sources are considered. We show that the rate of flushing is a function of the room volume, vent areas ( A) and the distribution, number (n) and strength (B) of the heat sources. We also show that the entire problem can be reduced to a single parameter ( μ) that is a measure of the vent areas, and a dimensionless time ( τ) that is a function of B, V and μ. Small-scale salt-bath experiments were conducted to measure the flushing rates in order to validate our modelling assumptions and predictions. The predicted flushing times show good agreement with the experiments over a wide range of μ. We apply our model to a typical open plan office and lecture theatre and discuss some of the implications of our results. © 2005 Elsevier Ltd. All rights reserved.
Resumo:
An atrium is a central feature of many modern naturally ventilated building designs. The atrium fills with warm air from the adjoining storeys: this air may be further warmed by direct solar heating in the atrium, and the deep warm layer enhances the flow. In this paper we focus on the degree of flow enhancement achieved by an atrium which is itself 'ventilated' directly, by a low-level connection to the exterior. A theoretical model is developed to predict the steady stack-driven displacement flow and thermal stratification in the building, due to heat gains in the storey and solar gains in the atrium, and compared with the results of laboratory experiments. Direct ventilation of the atrium is detrimental to the ventilation of the storey and the best design is identified as a compromise that provides adequate ventilation of both spaces. We identify extremes of design for which an atrium provides no significant enhancement of the flow, and show that an atrium only enhances the flow in the storey if its upper opening is of an intermediate size, and its lower opening is sufficiently small. © 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Natural sounds are structured on many time-scales. A typical segment of speech, for example, contains features that span four orders of magnitude: Sentences ($\sim1$s); phonemes ($\sim10$−$1$ s); glottal pulses ($\sim 10$−$2$s); and formants ($\sim 10$−$3$s). The auditory system uses information from each of these time-scales to solve complicated tasks such as auditory scene analysis [1]. One route toward understanding how auditory processing accomplishes this analysis is to build neuroscience-inspired algorithms which solve similar tasks and to compare the properties of these algorithms with properties of auditory processing. There is however a discord: Current machine-audition algorithms largely concentrate on the shorter time-scale structures in sounds, and the longer structures are ignored. The reason for this is two-fold. Firstly, it is a difficult technical problem to construct an algorithm that utilises both sorts of information. Secondly, it is computationally demanding to simultaneously process data both at high resolution (to extract short temporal information) and for long duration (to extract long temporal information). The contribution of this work is to develop a new statistical model for natural sounds that captures structure across a wide range of time-scales, and to provide efficient learning and inference algorithms. We demonstrate the success of this approach on a missing data task.