65 resultados para Mentha x piperita


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A variety of hydrogenated and non-hydrogenated amorphous carbon thin films have been characterized by means of grazing-incidence X-ray reflectivity (XRR) to give information about their density, thickness, surface roughness and layering. We used XRR to validate the density of ta-C, ta-C:H and a-C:H films derived from the valence plasmon in electron energy loss spectroscopy measurements, up to 3.26 and 2.39 g/cm3 for ta-C and ta-C:H, respectively. By comparing XRR and electron energy loss spectroscopy (EELS) data, we have been able for the first time to fit a common electron effective mass of m*/me = 0.87 for all amorphous carbons and diamond, validating the `quasi-free' electron approach to density from valence plasmon energy. While hydrogenated films are found to be substantially uniform in density across the film, ta-C films grown by the filtered cathodic vacuum arc (FCVA) show a multilayer structure. However, ta-C films grown with an S-bend filter show a high uniformity and only a slight dependence on the substrate bias of both sp3 and layering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a magneto-optical (MO) technique, magnetic field distributions have been measured in a melt-textured YBa 2Cu 3O 7-x bulk superconductor, joined to form an artificial grain boundary (GB), in an external magnetic field perpendicular to the sample surface. The magnetic field at a weak section of the GB shows different values between the field increasing up to 150mT and decreasing down to 0T after zero-field-cooling. Namely, the magnetic field in increasing field is higher than that in decreasing field, even in the same external field. This result supports a model in which such differences in magnetic field at the weak-link GB give rise to the hysteresis behavior in the field dependence of transport critical current density in polycrystalline samples. The field distributions across a well-joined region of the GB behave similarly to the adjoining bulk material and this result indicates the possibility of creating useful artifacts provided that the strongly coupled sections can be reproduced on a larger scale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The maintenance of the growth of the multibillion-dollar semiconductor industry requires the development of techniques for the fabrication and characterisation of nanoscale devices. Consequently, there is great interest in photolithography techniques such as extreme UV and x-ray. Both of these techniques are extremely expensive and technologically very demanding. In this paper we describe research on the feasibility of exploiting x-ray propagation within carbon nanotubes (CNT's) for the fabrication and characterisation of nanoscale devices. This work discusses the parameters determining the design space available. To demonstrate experimentally the feasibility of x-ray propagation, arrays of carbon nanotubes have been grown on silicon membranes. The latter are required to provide structural support for the CNT's while minimising energy loss. To form a waveguide metal is deposited between the nanotubes to block x-ray transmission in this region at the same time as cladding the CNT's. The major challenge has been to fill the spaces between the CNT's with material of sufficient thickness to block x-ray transmission while maintaining the structural integrity of the CNT's. Various techniques have been employed to fill the gaps between the nanotubes including electroplating, sputtering and evaporation. This work highlights challenges encountered in optimising the process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a method for extracting reliable architectural characteristics from complex porous structures using micro-computed tomography (μCT) images. The work focuses on a highly porous material composed of a network of fibres bonded together. The segmentation process, allowing separation of the fibres from the remainder of the image, is the most critical step in constructing an accurate representation of the network architecture. Segmentation methods, based on local and global thresholding, were investigated and evaluated by a quantitative comparison of the architectural parameters they yielded, such as the fibre orientation and segment length (sections between joints) distributions and the number of inter-fibre crossings. To improve segmentation accuracy, a deconvolution algorithm was proposed to restore the original images. The efficacy of the proposed method was verified by comparing μCT network architectural characteristics with those obtained using high resolution CT scans (nanoCT). The results indicate that this approach resolves the architecture of these complex networks and produces results approaching the quality of nanoCT scans. The extracted architectural parameters were used in conjunction with an affine analytical model to predict the axial and transverse stiffnesses of the fibre network. Transverse stiffness predictions were compared with experimentally measured values obtained by vibration testing. © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An X-ray imaging technique is used to probe the stability of 3-dimensional granular packs in a slowly rotating drum. Well before the surface reaches the avalanche angle, we observe intermittent plastic events associated with collective rearrangements of the grains located in the vicinity of the free surface. The energy released by these discrete events grows as the system approaches the avalanche threshold. By testing various preparation methods, we show that the pre-avalanche dynamics is not solely controlled by the difference between the free surface inclination and the avalanche angle. As a consequence, the measure of the pre-avalanche dynamics is unlikely to serve as a tool for predicting macroscopic avalanches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The three-dimensional structure of very large samples of monodisperse bead packs is studied by means of X-Ray Computed Tomography. We retrieve the coordinatesofeach bead inthe pack and wecalculate the average coordination number by using the tomographic images to single out the neighbors in contact. The results are compared with the average coordination number obtained in Aste et al. (2005) by using a deconvolution technique. We show that the coordination number increases with the packing fraction, varying between 6.9 and 8.2 for packing fractions between 0.59 and 0.64. © 2005 Taylor & Francis Group.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lifetimes of excited states in 128Ce were measured using the recoil distance Doppler-shift (RDDS) and the Doppler-shift attenuation (DSAM) methods. The experiments were performed at the Wright Nuclear Structure Laboratory of Yale University. Excited states of 128Ce were populated in the 100Mo(32Si,4n) reaction at 120 MeV and the nuclear γ decay was measured with an array of eight Clover detectors positioned at forward and backward angles. The deduced yrast transition strengths together with the energies of the levels within the ground-state (gs) band of 128Ce are in agreement with the predicted values for the X(5) critical point symmetry. Thus, we suggest 128Ce as a benchmark X(5) nucleus in the mass A ≈ 130 region. © World Scientific Publishing Company.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Y2-x Erx O3 thin films, with x varying between 0 and 0.72, have been successfully grown on crystalline silicon (c-Si) substrates by radio-frequency magnetron cosputtering of Y2 O 3 and Er2 O3 targets. As-deposited films are polycrystalline, showing the body-centered cubic structure of Y2 O3, and show only a slight lattice parameter contraction when x is increased, owing to the insertion of Er ions. All the films exhibit intense Er-related optical emission at room temperature both in the visible and infrared regions. By studying the optical properties for different excitation conditions and for different Er contents, all the mechanisms (i.e., cross relaxations, up-conversions, and energy transfers to impurities) responsible for the photoluminescence (PL) emission have been identified, and the existence of two different well-defined Er concentration regimes has been demonstrated. In the low concentration regime (x up to 0.05, Er-doped regime), the visible PL emission reaches its highest intensity, owing to the influence of up-conversions, thus giving the possibility of using Y2-x Er x O3 films as an up-converting layer in the rear of silicon solar cells. However, most of the excited Er ions populate the first two excited levels 4I11/2 and 4I13/2, and above a certain excitation flux a population inversion condition between the former and the latter is achieved, opening the route for the realization of amplifiers at 2.75 μm. Instead, in the high concentration regime (Er-compound regime), an increase in the nonradiative decay rates is observed, owing to the occurrence of cross relaxations or energy transfers to impurities. As a consequence, the PL emission at 1.54 μm becomes the most intense, thus determining possible applications for Y2-x Erx O 3 as an infrared emitting material. © 2009 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Results of X-ray absorption fine structure measurements in manganites (La1-xHox)2/3Ca1/3MnO3 with 0.15 < x < 0.50 are presented. When LaMnO3 is doped with a, divalent element such as Ca2+, substituting for La3+, holes are induced in the filled Mn d orbitais. This leads to a, strong ferromagnetic coupling between Mn sites. Ca ions in La1-xCa xMnO3 introduce a distortion of the crystal lattice and mixed valence Mn ions (Mn3+ and Mn4+). On the other hand, in manganites (La1-xHox)2/3Ca 1/3MnO3 the substitution of La for Ho causes a lattice distortion and induces a disorder, which reduces a magnetic interaction. The ferromagnetic transition temperature and conductivity decrease very quickly with increasing x. The magnetic and transport properties of compounds depend on the local atomic structure around Mn ions. The information on the bond lengths and Debye-Waller factor are obtained from the extended X-ray absorption fine structure (EXAFS) data analysis. The charge state of Mn is determined from the position of the absorption edge in X-ray absorption near edge structure (XANES) data. XAFS results are in good agreement with magnetic characteristics of the studied materials.