64 resultados para Localization accuracy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that the sensor self-localization problem can be cast as a static parameter estimation problem for Hidden Markov Models and we implement fully decentralized versions of the Recursive Maximum Likelihood and on-line Expectation-Maximization algorithms to localize the sensor network simultaneously with target tracking. For linear Gaussian models, our algorithms can be implemented exactly using a distributed version of the Kalman filter and a novel message passing algorithm. The latter allows each node to compute the local derivatives of the likelihood or the sufficient statistics needed for Expectation-Maximization. In the non-linear case, a solution based on local linearization in the spirit of the Extended Kalman Filter is proposed. In numerical examples we demonstrate that the developed algorithms are able to learn the localization parameters. © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the effect of mode-localization that arises from structural asymmetry induced by manufacturing tolerances in mechanically coupled, electrically transduced Si MEMS resonators. We demonstrate that in the case of such mechanically coupled resonators, the achievable series motional resistance (R x) is dependent not only on the quality factor (Q) but also on the variations in the eigenvector of the chosen mode of vibration induced by mode localization due to manufacturing tolerances during the fabrication process. We study this effect of mode-localization both theoretically and experimentally in two pairs of coupled double-ended tuning fork resonators with different levels of initial structural asymmetry. The measured series R x is minimal when the system is close to perfect symmetry and any deviation from structural symmetry induced by fabrication tolerances leads to a degradation in the effective R x. Mechanical tuning experiments of the stiffness of one of the coupled resonators was also conducted to study variations in R x as a function of structural asymmetry within the system, the results of which demonstrated consistent variations in motional resistance with predictions. © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A group of mobile robots can localize cooperatively, using relative position and absolute orientation measurements, fused through an extended Kalman filter (ekf). The topology of the graph of relative measurements is known to affect the steady-state value of the position error covariance matrix. Classes of sensor graphs are identified, for which tight bounds for the trace of the covariance matrix can be obtained based on the algebraic properties of the underlying relative measurement graph. The string and the star graph topologies are considered, and the explicit form of the eigenvalues of error covariance matrix is given. More general sensor graph topologies are considered as combinations of the string and star topologies, when additional edges are added. It is demonstrated how the addition of edges increases the trace of the steady-state value of the position error covariance matrix, and the theoretical predictions are verified through simulation analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Localization of chess-board vertices is a common task in computer vision, underpinning many applications, but relatively little work focusses on designing a specific feature detector that is fast, accurate and robust. In this paper the `Chess-board Extraction by Subtraction and Summation' (ChESS) feature detector, designed to exclusively respond to chess-board vertices, is presented. The method proposed is robust against noise, poor lighting and poor contrast, requires no prior knowledge of the extent of the chess-board pattern, is computationally very efficient, and provides a strength measure of detected features. Such a detector has significant application both in the key field of camera calibration, as well as in Structured Light 3D reconstruction. Evidence is presented showing its robustness, accuracy, and efficiency in comparison to other commonly used detectors both under simulation and in experimental 3D reconstruction of flat plate and cylindrical objects

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detecting receptor dimerisation and other forms of clustering on the cell surface depends on methods capable of determining protein-protein separations with high resolution in the ∼10-50 nm range. However, this distance range poses a significant challenge because it is too large for fluorescence resonance energy transfer and contains distances too small for all other techniques capable of high-resolution in cells. Here we have adapted the technique of fluorophore localisation imaging with photobleaching to measure inter-receptor separations in the cellular environment. Using the epidermal growth factor receptor, a key cancer target molecule, we demonstrate ∼10 nm resolution while continuously covering the range of ∼10-80 nm. By labelling the receptor on cells expressing low receptor numbers with a fluorescent antagonist we have found inter-receptor separations all the way up from 8 nm to 59 nm. Our data are consistent with epidermal growth factor receptors being able to form homo-polymers of at least 10 receptors in the absence of activating ligands. © 2013 Needham et al.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Particle tracking techniques are often used to assess the local mechanical properties of cells and biological fluids. The extracted trajectories are exploited to compute the mean-squared displacement that characterizes the dynamics of the probe particles. Limited spatial resolution and statistical uncertainty are the limiting factors that alter the accuracy of the mean-squared displacement estimation. We precisely quantified the effect of localization errors in the determination of the mean-squared displacement by separating the sources of these errors into two separate contributions. A "static error" arises in the position measurements of immobilized particles. A "dynamic error" comes from the particle motion during the finite exposure time that is required for visualization. We calculated the propagation of these errors on the mean-squared displacement. We examined the impact of our error analysis on theoretical model fluids used in biorheology. These theoretical predictions were verified for purely viscous fluids using simulations and a multiple-particle tracking technique performed with video microscopy. We showed that the static contribution can be confidently corrected in dynamics studies by using static experiments performed at a similar noise-to-signal ratio. This groundwork allowed us to achieve higher resolution in the mean-squared displacement, and thus to increase the accuracy of microrheology studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper examines the sources of uncertainly in models used to predict vibration from underground railways. It will become clear from this presentation that by varying parameters by a small amount, consistent with uncertainties in measured data, the predicted vibration levels vary significantly, often by more than 10dB. This error cannot be forecast. Small changes made to soil parameters (Compressive and Shear Wave velocities and density), to slab bending stiffness and mass and to the measurement position give rise to changes in vibration levels of more than lOdB. So if 10dB prediction error results from small uncertainties in soil parameters and measurement position it cannot be sensible to rely on prediction models for accuracy better than 10dB. The presentation will demonstrate in real time the use of the new - and freely-available - PiP software for calculating vibration from railway tunnels in real time.