57 resultados para Liquid-Solid Flow
Resumo:
The flow field of a lab-scale model gas turbine swirl burner was characterised using particle imaging velocimetry (PIV) at atmospheric condition. The swirl burner consists of an axial swirler, a twin-fluid atomizer and a quartz tube as combustor wall. The main non-reacting swirling air flow without spray was compared to swirl flow with spray under unconfined and enclosed conditions. The introduction of liquid fuel spray changes the flow field of the main swirling air flow at the burner outlet where the radial velocity components are enhanced. Under reacting conditions, the enclosure generates a corner recirculation zone that intensifies the strength of the radial velocity. Comparison of the flow fields with a spray flame using diesel and palm biodiesel shows very similar flow fields. The flow field data can be used as validation target for swirl flame modeling. © (2013) Trans Tech Publications, Switzerland.
Resumo:
Many bacteria on earth exist in surface-attached communities known as biofilms. These films are responsible for manifold problems, including hospital-acquired infections and biofouling, but they can also be beneficial. Biofilm growth depends on the transport of nutrients and waste, for which diffusion is thought to be the main source of transport. However, diffusion is ineffective for transport over large distances and thus should limit growth. Nevertheless, biofilms can grow to be very large. Here we report the presence of a remarkable network of well-defined channels that form in wild-type Bacillus subtilis biofilms and provide a system for enhanced transport. We observe that these channels have high permeability to liquid flow and facilitate the transport of liquid through the biofilm. In addition, we find that spatial variations in evaporative flux from the surface of these biofilms provide a driving force for the flow of liquid in the channels. These channels offer a remarkably simple system for liquid transport, and their discovery provides insight into the physiology and growth of biofilms.
Resumo:
This paper reports on the design, optimization and testing of a self-regulating valve for single-phase liquid cooling of microelectronics. Its purpose is to maintain the integrated circuit (IC) at constant temperature and to reduce power consumption by diminishing flow generated by the pump as a function of the cooling requirements. It uses a thermopneumatic actuation principle that combines the advantages of zero power consumption and small size in combination with a high flow rate and low manufacturing costs. The valve actuation is provided by the thermal expansion of a liquid (actuation fluid) which, at the same time, actuates the valve and provides feed-back sensing. A maximum flow rate of 38 kg h-1 passes through the valve for a heat load up to 500 W. The valve is able to reduce the pumping power by up to 60% and it has the capability to maintain the IC at a more uniform temperature. © 2011 IOP Publishing Ltd.
Resumo:
Fluids with a controllable viscosity gained a lot of interest throughout the last years. One of the advantages of these fluids is that they allow to fabricate hydraulic components such as valves with a very simple structure. Although the properties of these fluids are very interesting for microsystems, their applicability is limited at microscale since the particles suspended in these fluids tend to obstruct microchannels. This paper investigates the applicability of electrorheologic Liquid Crystals (LCs) in microsystems. Since LC's do not contain suspended particles, they show intrinsic advantages over classic rheologic active fluids in microapplications. As a matter of fact, LC molecules are usually only a few nanometers long, and therefore, they can probably be used in systems with sub-micrometer channels or other nanoscale applications. This paper presents a novel model describing the electrorheologic behavior of these nanoscale molecules. This model is used to simulate a microvalve controlled by LC's. By comparing measurements and simulations performed on this microvalve it is possible to prove that the model developed in this paper is very accurate. In addition, these simulations and measurements revealed other remarkable properties of LC's, such as high bandwidths and high changes in flow resistance. © 2006 IEEE.
Resumo:
Fluids with controllable flow properties have gained considerable interest in the past few years. Some of these fluids such as magnetorheologic fluids are now widely applied to active dampers and valves. Although these fluids show promising properties for microsystems, their applicability is limited to the microscale since particles suspended in these fluids tend to obstruct microchannels. This paper investigates the applicability of electrorheologic liquid crystals (LCs) in microsystems. Since LCs do not contain suspended particles, they show intrinsic advantages over classic rheologic fluids in micro-applications. This paper presents a novel physical model that describes the static and the dynamic behaviour of electrorheologic LCs. The developed model is validated by comparing simulations and measurements performed on a rectangular microchannel. This assessment shows that the model presented in this paper is able to simulate both static and dynamic properties accurately. Therefore, this model is useful for the understanding, simulation and optimization of devices using LCs as electrorheological fluid. In addition, measurements performed in this paper reveal remarkable properties of LCs, such as high bandwidths and high changes in flow resistance. © 2006 IOP Publishing Ltd.
Resumo:
Eight equations of state (EOS) have been evaluated for the simulation of compressible liquid water properties, based on empirical correlations, the principle of corresponding states and thermodynamic relations. The IAPWS-IF97 EOS for water was employed as the reference case. These EOSs were coupled to a modified AUSM+-up convective flux solver to determine flow profiles for three test cases of differing flow conditions. The impact of the non-viscous interaction term discretisation scheme, interfacial pressure method and selection of low-Mach number diffusion were also compared. It was shown that a consistent discretisation scheme using the AUSM+-up solver for both the convective flux and the non-viscous interfacial term demonstrated both robustness and accuracy whilst facilitating a computationally cheaper solution than discretisation of the interfacial term independently by a central scheme. The simple empirical correlations gave excellent results in comparison to the reference IAPWS-IF97 EOS and were recommended for developmental work involving water as a cheaper and more accurate EOS than the more commonly used stiffened-gas model. The correlations based on the principles of corresponding-states and the modified Peng-Robinson cubic EOS also demonstrated a high degree of accuracy, which is promising for future work with generic fluids. Further work will encompass extension of the solver to multiple dimensions and to account for other source terms such as surface tension, along with the incorporation of phase changes. © 2013.
Resumo:
The present study aims at accounting for swirling mean flow effects on rotor trailing-edge noise. Indeed, the mean flow in between the rotor and the stator of the fan or of a compressor stage is highly swirling. The extension of Ffowcs-Williams & Hawkings' acoustic analogy in a medium at rest with moving surfaces and of Goldstein's acoustic analogy in a circular duct with uniform mean flow to a swirling mean flow in an annular duct is introduced. It is first applied to tonal noise. In most cases, the swirl modifies the pressure distribution downstream of the fan. In several configurations, when the swirl is rather close to a solid body swirl, it is often sufficient to apply a simple Doppler effect correction when predicting the duct modes in uniform mean flow in order to predict accurately the noise radiated with swirl. However, in other realistic configurations, the swirling mean-flow effect cannot be addressed using this simple Doppler effect correction. Second, a rotor trailing-edge noise model accounting for both the effects of the annular duct and the swirling mean flow is developed and applied to a realistic fan rotor with different swirling and sheared mean flows (and as a result different associated blade stagger angles). The benchmark cases are built from the Boeing 18-inch Fan Rig Broadband Noise Test. In all cases the swirling mean flow has an effect. In some cases the a simple Doppler effect may address it, but, in other realistic configurations our acoustic analogy with swirl is needed. © 2012 by the authors. Published by the American Institute of Aeronautics and Astronautics, Inc.
Resumo:
The coalescence and mixing of a sessile and an impacting liquid droplet on a solid surface are studied experimentally and numerically in terms of lateral separation and droplet speed. Two droplet generators are used to produce differently colored droplets. Two high-speed imaging systems are used to investigate the impact and coalescence of the droplets in color from a side view with a simultaneous gray-scale view from below. Millimeter-sized droplets were used with dynamical conditions, based on the Reynolds and Weber numbers, relevant to microfluidics and commercial inkjet printing. Experimental measurements of advancing and receding static contact angles are used to calibrate a contact angle hysteresis model within a lattice Boltzmann framework, which is shown to capture the observed dynamics qualitatively and the final droplet configuration quantitatively. Our results show that no detectable mixing occurs during impact and coalescence of similar-sized droplets, but when the sessile droplet is sufficiently larger than the impacting droplet vortex ring generation can be observed. Finally we show how a gradient of wettability on the substrate can potentially enhance mixing.
Resumo:
This paper is concerned with modelling the effects of swirling flow on turbomachinery noise. We develop an acoustic analogy to predict sound generation in a swirling and sheared base flow in an annular duct, including the presence of moving solid surfaces to account for blade rows. In so doing we have extended a number of classical earlier results, including Ffowcs Williams & Hawkings' equation in a medium at rest with moving surfaces, and Lilley's equation for a sheared but non-swirling jet. By rearranging the Navier-Stokes equations we find a single equation, in the form of a sixth-order differential operator acting on the fluctuating pressure field on the left-hand side and a series of volume and surface source terms on the right-hand side; the form of these source terms depends strongly on the presence of swirl and radial shear. The integral form of this equation is then derived, using the Green's function tailored to the base flow in the (rigid) duct. As is often the case in duct acoustics, it is then convenient to move into temporal, axial and azimuthal Fourier space, where the Green's function is computed numerically. This formulation can then be applied to a number of turbomachinery noise sources. For definiteness here we consider the noise produced downstream when a steady distortion flow is incident on the fan from upstream, and compare our results with those obtained using a simplistic but commonly used Doppler correction method. We show that in all but the simplest case the full inclusion of swirl within an acoustic analogy, as described in this paper, is required. © 2013 Cambridge University Press.
Resumo:
The tunable liquid crystal (LC) lens designed for a holographic projection system is demonstrated. By using a single patterned electrode LC lens, a solid lens and an encoded Fresnel lens on the LCoS panel, we can maintain the image size of the holographic projector with different wavelengths (λ:674nm, 532nm and 445nm) . The zoom ratio of the holographic projection system depends on the lens power of the solid lens and the tunable lens power of the LC lens. The optical zoom function can help to solve the image size mismatching problem of the holographic projection system. © 2013 SPIE.
Resumo:
It is widely acknowledged that ceramic armor experiences an unsteady penetration response: an impacting projectile may erode on the surface of a ceramic target without substantial penetration for a significant amount of time and then suddenly start to penetrate the target. Although known for more than four decades, this phenomenon, commonly referred to as dwell, remains largely unexplained. Here, we use scaled analog experiments with a low-speed water jet and a soft, translucent target material to investigate dwell. The transient target response, in terms of depth of penetration and impact force, is captured using a high-speed camera in combination with a piezoelectric force sensor. We observe the phenomenon of dwell using a soft (noncracking) target material. The results show that the penetration rate increases when the flow of the impacting water jet is reversed due to the deformation of the jet-target interface--this reversal is also associated with an increase in the force exerted by the jet on the target. Creep penetration experiments with a constant indentation force did not show an increase in the penetration rate, confirming that flow reversal is the cause of the unsteady penetration rate. Our results suggest that dwell can occur in a ductile noncracking target due to flow reversal. This phenomenon of flow reversal is rather widespread and present in a wide range of impact situations, including water-jet cutting, needleless injection, and deposit removal via a fluid jet.