72 resultados para LEAN
Resumo:
Lean premixed prevaporized (LPP) technology has been widely used in the new generation of gas turbines in which reduced emissions are a priority. However, such combustion systems are susceptible to the damage of self-excited oscillations. Feedback control provide a way of preventing such dynamic stabilities. A flame dynamics assumption is proposed for a recently developed unsteady heat release model, the robust design technique, ℋ ∞ loop-shaping, is applied for the controller design and the performance of the controller is confirmed by simulations of the closed-loop system. The Integral Quadratic Constraints(IQC) method is employed to prove the stability of the closed-loop system. ©2010 IEEE.
Resumo:
An improved understanding of lean fuel turbulent premixed flames must play a central role in the fundamental science of these new concepts.
Resumo:
An improved understanding of lean fuel turbulent premixed flames must play a central role in the fundamental science of these new concepts.
Resumo:
An improved understanding of lean fuel turbulent premixed flames must play a central role in the fundamental science of these new concepts.
Resumo:
An improved understanding of lean fuel turbulent premixed flames must play a central role in the fundamental science of these new concepts.
Resumo:
Combustion oscillations in gas turbines can result in serious damage. One method used to predict such oscillations is to analyze the combustor acoustics using a simple linear model. Such a model requires a flame transfer function to describe the response of the heat release to flow perturbations inside the combustor. This paper reports on the application of Planar Laser Induced Fluorescence (PLIF) of OH radicals to analyze the response of a lean premixed flame to oncoming flow perturbations. Both self-excited oscillations and low amplitude forced oscillations at various frequencies are investigated in an atmospheric pressure model combustor rig. In order to visualize fluctuations of local fuel distribution, acetone-PLIF was also applied in non-reacting and acoustically forced flows at oscillation frequencies of 200 Hz and 510 Hz, respectively. OH-PLIF images were acquired over a range of operating parameters. The results presented in this paper originate from data sets acquired at fixed phase angles during the oscillation cycle. Comparative experiments in self excited and forced acoustic oscillations show that the flame and the combustion intensity develop similarly throughout the pressure cycle in both cases. Although the peak fluorescence intensities differ between self excited and the forced instabilities, there is a clear correspondence in the observed frequency and phase information from the two cases. This result encourages a comparison of the OH-PLIF and the acetone-PLIF results. Quantitative measurements of the equivalence ratio in specific areas of the measurement plane offer insight on the complex phenomena coupling acoustic perturbations, i.e. flow velocity fluctuations, to fluctuations in fuel distribution and combustion intensity, ultimately resulting in self excited combustion oscillations.
Resumo:
Active control has been shown as a feasible technology for suppressing thermoacoustic instability in continuous combustion systems, and the control strategy design is substantially dependent on the reliability of the flame model. In this paper, refinement of G-equation flame model for the dynamics of lean premixed combustion is investigated. Precisely, the dynamics between the flame speed S_u and equivalence ratio phi are proposed based on numerical calculations and physical explanations. Finally, the developed model is tested on one set of experimental data.
Resumo:
A parametric study of spark ignition in a uniform monodisperse turbulent spray is performed with complex chemistry three-dimensional Direct Numerical Simulations in order to improve the understanding of the structure of the ignition kernel. The heat produced by the kernel increases with the amount of fuel evaporated inside the spark volume. Moreover, the heat sink by evaporation is initially higher than the heat release and can have a negative effect on ignition. With the sprays investigated, heat release occurs over a large range of mixture fractions, being high within the nominal flammability limits and finite but low below the lean flammability limit. The burning of very lean regions is attributed to the diffusion of heat and species from regions of high heat release, and from the spark, to lean regions. Two modes of spray ignition are reported. With a relatively dilute spray, nominally flammable material exists only near the droplets. Reaction zones are created locally near the droplets and have a non-premixed character. They spread from droplet to droplet through a very lean interdroplet spacing. With a dense spray, the hot spark region is rich due to substantial evaporation but the cold region remains lean. In between, a large surface of flammable material is generated by evaporation. Ignition occurs there and a large reaction zone propagates from the rich burned region to the cold lean region. This flame is wrinkled due to the stratified mixture fraction field and evaporative cooling. In the dilute spray, the reaction front curvature pdf contains high values associated with single droplet combustion, while in the dense spray, the curvature is lower and closer to the curvature associated with gaseous fuel ignition kernels. © 2011 The Combustion Institute.
Resumo:
This paper describes an experimental investigation into the interactions that occur between two lean turbulent premixed flames stabilised on conical bluff-bodies when they are moved closer together. Cinematographic OH-PLIF measurements were acquired to investigate adjacent flame front interactions as a function of flame separation distance (S). Flame surface density (FSD) and curvature were determined to characterise the unforced flames. Acoustic forcing was then applied to explore the amplitude dependent thermo-acoustic response. Phase-averaged FSD and global heat release measurements in the form of OH * chemiluminescence were obtained for a range of forcing frequencies (f) and amplitudes (A) as a function of S. As the flames were brought closer together the adjacent annular jets were found to merge into a single jet structure. This caused adjacent flame fronts to merge above the wake region between the two flames at a location determined by the jet efflux (flame angle) and S. This region of flame-flame interaction we refer to as 'interacting region'. In the unforced flames, a trend of increasingly negative curvature for decreasing S produced a small net increase in flame surface area via cusp formation. When subjected to acoustic forcing, S-dependent regimes were found in the global heat release response as a function A. The overall trend showed that the occurrence of jet/flame merging reduces the value of A at which non-linear response occurs. In support of previous findings for flames stabilised along shear layers, the phase-averaged FSD showed that the flame dynamics that drive the thermo-acoustic response result from the roll-up of vortices which generate large-scale vortex-flame interactions. Compared with axisymmetric flames, the occurrence of jet merging alters the vortex-flame interactions resulting in an asymmetric contribution to the heat release between the wall and interacting regions. The majority of the heat release was found to occur in the interacting region through the rapid production and destruction of flame surface area. The occurrence of jet merging and large-scale interactions between adjacent flames result in different physical mechanisms that drive the thermo-acoustic response compared with single axisymmetric flames. © 2011.
Resumo:
Introducing a "Cheaper, Faster, Better" product in today's highly competitive market is a challenging target. Therefore, for organizations to improve their performance in this area, they need to adopt methods such as process modelling, risk mitigation and lean principles. Recently, several industries and researchers focused efforts on transferring the value orientation concept to other phases of the Product Life Cycle (PLC) such as Product Development (PD), after its evident success in manufacturing. In PD, value maximization, which is the main objective of lean theory, has been of particular interest as an improvement concept that can enhance process flow logistics and support decision-making. This paper presents an ongoing study of the current understanding of value thinking in PD (VPD) with a focus on value dimensions and implementation benefits. The purpose of this study is to consider the current state of knowledge regarding value thinking in PD, and to propose a definition of value and a framework for analyzing value delivery. The framework-named the Value Cycle Map (VCM)- intends to facilitate understanding of value and its delivery mechanism in the context of the PLC. We suggest the VCM could be used as a foundation for future research in value modelling and measurement in PD.
Resumo:
Experimental results are presented from a series of turbulent methane/air stratified flames stabilized on a swirl burner. Nine operating conditions are considered, systematically varying the level of stratification and swirl while maintaining a lean global mean equivalence ratio of φ̄=0.75. Scalar data are obtained from Rayleigh/Raman/CO laser induced fluorescence (CO-LIF) line measurements at 103μm resolution, allowing the behavior of the major combustion species-CH 4, CO 2, CO, H 2, H 2O and O 2-to be probed within the instantaneous flame front. The corresponding three-dimensional surface density function and thermal scalar dissipation rate are investigated, along with geometric characteristics of the flame such as curvature and flame thickness. Hydrogen and carbon monoxide levels within the flame brush are raised by stratification, indicating models with laminar premixed flame chemistry may not be suitable for stratified flames. However, flame surface density, scalar dissipation and curvature all appear insensitive to the degree of stratification in the flames surveyed. © 2012 The Combustion Institute.
Resumo:
This paper analyzes the forced response of swirl-stabilized lean-premixed flames to acoustic forcing in a laboratory-scale stratified burner. The double-swirler, double-channel annular burner was specially designed to generate acoustic velocity oscillations and radial fuel stratification at the inlet of the combustion chamber. Temporal oscillations of equivalence ratio along the axial direction are dissipated over a long distance, and therefore the effects of time-varying fuel/air ratio on the flame response are not considered. Simultaneous measurements of inlet velocity and heat release rate oscillations were made using a hot wire anemometer and photomultiplier tubes with narrowband OH*/CH* interference filters. Time-averaged CH* chemiluminescence intensities were measured using an intensified CCD camera. Results show that flame stabilization mechanisms vary depending on stratification ratio for a constant global equivalence ratio. For a uniformly premixed condition, an enveloped M-shaped flame is observed. For stratified conditions, however, a dihedral V-flame and a detached flame are developed for outer stream and inner stream fuel enrichment cases, respectively. Flame transfer function (FTF) measurement results indicate that a V-shaped flame tends to damp incident flow oscillations, while a detached flame acts as a strong amplifier relative to the uniformly premixed condition. The phase difference of FTF increases in the presence of stratification. More importantly, the dynamic characteristics obtained from the forced stratified flame measurements are well correlated with unsteady flame behavior under limit-cycle pressure oscillations. The results presented in this paper provide insight into the impact of nonuniform reactant stoichiometry on combustion instabilities, which has not been well explored to date. Copyright © 2011 by ASME.
Resumo:
The effects of stratification on a series of highly swirling turbulent flames under globally lean conditions (φg=0.75) are investigated using a new high-spatial resolution multi-scalar dataset. This dataset features two key properties: high spatial resolution which approaches the 60 micron optical limit of the measurement system, and a wavelet oversampling methodology which significantly reduces the influence of noise. Furthermore, the very large number of realizations (30,000) acquired in the stratified cases permits statistically significant results to be obtained even after aggressive conditioning is applied. Data are doubly conditioned on equivalence ratio and the degree of stratification across the flame in each instantaneous realization. The influence of stoichiometry is limited by conditioning on the equivalence ratio at the location of peak CO mass fraction, which is shown to be a good surrogate for the location of peak heat release rate, while the stratification is quantified using a linear gradient in equivalence ratio across the instantaneous flame front. This advanced conditioning enables robust comparisons with the baseline lean premixed flame. Species mass fractions of both carbon monoxide and hydrogen are increased in temperature space under stratified conditions. Stratification is also shown to significantly increase thermal gradients, yet the derived three-dimensional flame surface density is shown to be relatively insensitive to stratification. Whilst the presence of instantaneous stratification broadens the curvature distribution relative to the premixed case, the degree of broadening is not significantly influenced by the range of global stratification ratios examined in this study. © 2012 The Combustion Institute.
Resumo:
This paper describes an experimental investigation into the interactions that occur between two acoustically forced lean turbulent premixed flames for an induced phase lag. Phase-averaged FSD from cinematographic OH-PLIF measurements and global heat release measurements were obtained for a range phase lags (ψ S) and amplitudes (A) as a function of flame separation distance, S. The effect of bringing two flames closer together causes jet merging, which alters the vortex flame interactions that drive the thermo-acoustic response. To simulate circumferential modes a phase lag was introduced, which affected the flame dynamics in the region of flame-flame interaction, with these changes dependent on S. For moderate separation distances, the flame structure becomes increasingly asymmetric inducing a very small transverse oscillation. However, for moderate phase lags (φ s ≤ 20) the magnitude of these changes and their subsequent influence on the thermo-acoustic response was found to be slight in comparison with changes in S. Copyright © 2012 by the American Institute of Aeronautics and Astronautics, Inc.