86 resultados para Intellectual Task Solver


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The motor system responds to perturbations with reflexes, such as the vestibulo-ocular reflex or stretch reflex, whose gains adapt in response to novel and fixed changes in the environment, such as magnifying spectacles or standing on a tilting platform. Here we demonstrate a reflex response to shifts in the hand's visual location during reaching, which occurs before the onset of voluntary reaction time, and investigate how its magnitude depends on statistical properties of the environment. We examine the change in reflex response to two different distributions of visuomotor discrepancies, both of which have zero mean and equal variance across trials. Critically one distribution is task relevant and the other task irrelevant. The task-relevant discrepancies are maintained to the end of the movement, whereas the task-irrelevant discrepancies are transient such that no discrepancy exists at the end of the movement. The reflex magnitude was assessed using identical probe trials under both distributions. We find opposite directions of adaptation of the reflex response under these two distributions, with increased reflex magnitudes for task-relevant variability and decreased reflex magnitudes for task-irrelevant variability. This demonstrates modulation of reflex magnitudes in the absence of a fixed change in the environment, and shows that reflexes are sensitive to the statistics of tasks with modulation depending on whether the variability is task relevant or task irrelevant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When we have learned a motor skill, such as cycling or ice-skating, we can rapidly generalize to novel tasks, such as motorcycling or rollerblading [1-8]. Such facilitation of learning could arise through two distinct mechanisms by which the motor system might adjust its control parameters. First, fast learning could simply be a consequence of the proximity of the original and final settings of the control parameters. Second, by structural learning [9-14], the motor system could constrain the parameter adjustments to conform to the control parameters' covariance structure. Thus, facilitation of learning would rely on the novel task parameters' lying on the structure of a lower-dimensional subspace that can be explored more efficiently. To test between these two hypotheses, we exposed subjects to randomly varying visuomotor tasks of fixed structure. Although such randomly varying tasks are thought to prevent learning, we show that when subsequently presented with novel tasks, subjects exhibit three key features of structural learning: facilitated learning of tasks with the same structure, strong reduction in interference normally observed when switching between tasks that require opposite control strategies, and preferential exploration along the learned structure. These results suggest that skill generalization relies on task variation and structural learning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most behavioral tasks have time constraints for successful completion, such as catching a ball in flight. Many of these tasks require trading off the time allocated to perception and action, especially when only one of the two is possible at any time. In general, the longer we perceive, the smaller the uncertainty in perceptual estimates. However, a longer perception phase leaves less time for action, which results in less precise movements. Here we examine subjects catching a virtual ball. Critically, as soon as subjects began to move, the ball became invisible. We study how subjects trade-off sensory and movement uncertainty by deciding when to initiate their actions. We formulate this task in a probabilistic framework and show that subjects' decisions when to start moving are statistically near optimal given their individual sensory and motor uncertainties. Moreover, we accurately predict individual subject's task performance. Thus we show that subjects in a natural task are quantitatively aware of how sensory and motor variability depend on time and act so as to minimize overall task variability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Learning is often understood as an organism's gradual acquisition of the association between a given sensory stimulus and the correct motor response. Mathematically, this corresponds to regressing a mapping between the set of observations and the set of actions. Recently, however, it has been shown both in cognitive and motor neuroscience that humans are not only able to learn particular stimulus-response mappings, but are also able to extract abstract structural invariants that facilitate generalization to novel tasks. Here we show how such structure learning can enhance facilitation in a sensorimotor association task performed by human subjects. Using regression and reinforcement learning models we show that the observed facilitation cannot be explained by these basic models of learning stimulus-response associations. We show, however, that the observed data can be explained by a hierarchical Bayesian model that performs structure learning. In line with previous results from cognitive tasks, this suggests that hierarchical Bayesian inference might provide a common framework to explain both the learning of specific stimulus-response associations and the learning of abstract structures that are shared by different task environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When a racing driver steers a car around a sharp bend, there is a trade-off between speed and accuracy, in that high speed can lead to a skid whereas a low speed increases lap time, both of which can adversely affect the driver's payoff function. While speed-accuracy trade-offs have been studied extensively, their susceptibility to risk sensitivity is much less understood, since most theories of motor control are risk neutral with respect to payoff, i.e., they only consider mean payoffs and ignore payoff variability. Here we investigate how individual risk attitudes impact a motor task that involves such a speed-accuracy trade-off. We designed an experiment where a target had to be hit and the reward (given in points) increased as a function of both subjects' endpoint accuracy and endpoint velocity. As faster movements lead to poorer endpoint accuracy, the variance of the reward increased for higher velocities. We tested subjects on two reward conditions that had the same mean reward but differed in the variance of the reward. A risk-neutral account predicts that subjects should only maximize the mean reward and hence perform identically in the two conditions. In contrast, we found that some (risk-averse) subjects chose to move with lower velocities and other (risk-seeking) subjects with higher velocities in the condition with higher reward variance (risk). This behavior is suboptimal with regard to maximizing the mean number of points but is in accordance with a risk-sensitive account of movement selection. Our study suggests that individual risk sensitivity is an important factor in motor tasks with speed-accuracy trade-offs.