87 resultados para Infrastructure Projects
Resumo:
The recent advances in urban wireless communications and protocols that spurred the development of city-wide wireless infrastructure motivated this research, since in many cases, construction sites are not conveniently located for wired connectivity. Large scale transportation projects for example, such as new highways, railroad tracks and the networks of utilities (power-lines, phone lines, mobile towers, etc) that usually follow them are constructed in areas where wired infrastructure for data exchange is often expensive and time-consuming to deploy. The communication difficulties that can be encountered in such construction sites can be addressed with a wireless communications link between the construction site and the decision-making office. This paper presents a case study on long-range, wireless communications suitable for data exchange between construction sites and engineering headquarters. The purpose of this study was to define the requirements for a reliable wireless communications model where common types of electronic construction data will be exchanged in a fast and efficient manner, and construction site personnel will be able to interact and share knowledge, information and electronic resources with the office staff.
Resumo:
Infrastructure spatial data, such as the orientation and the location of in place structures and these structures' boundaries and areas, play a very important role for many civil infrastructure development and rehabilitation applications, such as defect detection, site planning, on-site safety assistance and others. In order to acquire these data, a number of modern optical-based spatial data acquisition techniques can be used. These techniques are based on stereo vision, optics, time of flight, etc., and have distinct characteristics, benefits and limitations. The main purpose of this paper is to compare these infrastructure optical-based spatial data acquisition techniques based on civil infrastructure application requirements. In order to achieve this goal, the benefits and limitations of these techniques were identified. Subsequently, these techniques were compared according to applications' requirements, such as spatial accuracy, the automation of acquisition, the portability of devices and others. With the help of this comparison, unique characteristics of these techniques were identified so that practitioners will be able to select an appropriate technique for their own applications.
Innovative Stereo Vision-Based Approach to Generate Dense Depth Map of Transportation Infrastructure
Resumo:
Three-dimensional (3-D) spatial data of a transportation infrastructure contain useful information for civil engineering applications, including as-built documentation, on-site safety enhancements, and progress monitoring. Several techniques have been developed for acquiring 3-D point coordinates of infrastructure, such as laser scanning. Although the method yields accurate results, the high device costs and human effort required render the process infeasible for generic applications in the construction industry. A quick and reliable approach, which is based on the principles of stereo vision, is proposed for generating a depth map of an infrastructure. Initially, two images are captured by two similar stereo cameras at the scene of the infrastructure. A Harris feature detector is used to extract feature points from the first view, and an innovative adaptive window-matching technique is used to compute feature point correspondences in the second view. A robust algorithm computes the nonfeature point correspondences. Thus, the correspondences of all the points in the scene are obtained. After all correspondences have been obtained, the geometric principles of stereo vision are used to generate a dense depth map of the scene. The proposed algorithm has been tested on several data sets, and results illustrate its potential for stereo correspondence and depth map generation.
Resumo:
Camera motion estimation is one of the most significant steps for structure-from-motion (SFM) with a monocular camera. The normalized 8-point, the 7-point, and the 5-point algorithms are normally adopted to perform the estimation, each of which has distinct performance characteristics. Given unique needs and challenges associated to civil infrastructure SFM scenarios, selection of the proper algorithm directly impacts the structure reconstruction results. In this paper, a comparison study of the aforementioned algorithms is conducted to identify the most suitable algorithm, in terms of accuracy and reliability, for reconstructing civil infrastructure. The free variables tested are baseline, depth, and motion. A concrete girder bridge was selected as the "test-bed" to reconstruct using an off-the-shelf camera capturing imagery from all possible positions that maximally the bridge's features and geometry. The feature points in the images were extracted and matched via the SURF descriptor. Finally, camera motions are estimated based on the corresponding image points by applying the aforementioned algorithms, and the results evaluated.
Resumo:
The commercial far-range (>10m) infrastructure spatial data collection methods are not completely automated. They need significant amount of manual post-processing work and in some cases, the equipment costs are significant. This paper presents a method that is the first step of a stereo videogrammetric framework and holds the promise to address these issues. Under this method, video streams are initially collected from a calibrated set of two video cameras. For each pair of simultaneous video frames, visual feature points are detected and their spatial coordinates are then computed. The result, in the form of a sparse 3D point cloud, is the basis for the next steps in the framework (i.e., camera motion estimation and dense 3D reconstruction). A set of data, collected from an ongoing infrastructure project, is used to show the merits of the method. Comparison with existing tools is also shown, to indicate the performance differences of the proposed method in the level of automation and the accuracy of results.
Resumo:
Automating the model generation process of infrastructure can substantially reduce the modeling time and cost. This paper presents a method to generate a sparse point cloud of an infrastructure scene using a single video camera under practical constraints. It is the first step towards establishing an automatic framework for object-oriented as-built modeling. Motion blur and key frame selection criteria are considered. Structure from motion and bundle adjustment are explored. The method is demonstrated in a case study where the scene of a reinforced concrete bridge is videotaped, reconstructed, and metrically validated. The result indicates the applicability, efficiency, and accuracy of the proposed method.
Resumo:
The existing machine vision-based 3D reconstruction software programs provide a promising low-cost and in some cases automatic solution for infrastructure as-built documentation. However in several steps of the reconstruction process, they only rely on detecting and matching corner-like features in multiple views of a scene. Therefore, in infrastructure scenes which include uniform materials and poorly textured surfaces, these programs fail with high probabilities due to lack of feature points. Moreover, except few programs that generate dense 3D models through significantly time-consuming algorithms, most of them only provide a sparse reconstruction which does not necessarily include required points such as corners or edges; hence these points have to be manually matched across different views that could make the process considerably laborious. To address these limitations, this paper presents a video-based as-built documentation method that automatically builds detailed 3D maps of a scene by aligning edge points between video frames. Compared to corner-like features, edge points are far more plentiful even in untextured scenes and often carry important semantic associations. The method has been tested for poorly textured infrastructure scenes and the results indicate that a combination of edge and corner-like features would allow dealing with a broader range of scenes.
Resumo:
Image-based (i.e., photo/videogrammetry) and time-of-flight-based (i.e., laser scanning) technologies are typically used to collect spatial data of infrastructure. In order to help architecture, engineering, and construction (AEC) industries make cost-effective decisions in selecting between these two technologies with respect to their settings, this paper makes an attempt to measure the accuracy, quality, time efficiency, and cost of applying image-based and time-of-flight-based technologies to conduct as-built 3D reconstruction of infrastructure. In this paper, a novel comparison method is proposed, and preliminary experiments are conducted. The results reveal that if the accuracy and quality level desired for a particular application is not high (i.e., error < 10 cm, and completeness rate > 80%), image-based technologies constitute a good alternative for time-of-flight-based technologies and significantly reduce the time and cost needed for collecting the data on site.
Resumo:
Most of the existing automated machine vision-based techniques for as-built documentation of civil infrastructure utilize only point features to recover the 3D structure of a scene. However it is often the case in man-made structures that not enough point features can be reliably detected (e.g. buildings and roofs); this can potentially lead to the failure of these techniques. To address the problem, this paper utilizes the prominence of straight lines in infrastructure scenes. It presents a hybrid approach that benefits from both point and line features. A calibrated stereo set of video cameras is used to collect data. Point and line features are then detected and matched across video frames. Finally, the 3D structure of the scene is recovered by finding 3D coordinates of the matched features. The proposed approach has been tested on realistic outdoor environments and preliminary results indicate its capability to deal with a variety of scenes.
Resumo:
Videogrammetry is an inexpensive and easy-to-use technology for spatial 3D scene recovery. When applied to large scale civil infrastructure scenes, only a small percentage of the collected video frames are required to achieve robust results. However, choosing the right frames requires careful consideration. Videotaping a built infrastructure scene results in large video files filled with blurry, noisy, or redundant frames. This is due to frame rate to camera speed ratios that are often higher than necessary; camera and lens imperfections and limitations that result in imaging noise; and occasional jerky motions of the camera that result in motion blur; all of which can significantly affect the performance of the videogrammetric pipeline. To tackle these issues, this paper proposes a novel method for automating the selection of an optimized number of informative, high quality frames. According to this method, as the first step, blurred frames are removed using the thresholds determined based on a minimum level of frame quality required to obtain robust results. Then, an optimum number of key frames are selected from the remaining frames using the selection criteria devised by the authors. Experimental results show that the proposed method outperforms existing methods in terms of improved 3D reconstruction results, while maintaining the optimum number of extracted frames needed to generate high quality 3D point clouds.© 2012 Elsevier Ltd. All rights reserved.
Resumo:
Image-based (i.e., photo/videogrammetry) and time-of-flight-based (i.e., laser scanning) technologies are typically used to collect spatial data of infrastructure. In order to help architecture, engineering, and construction (AEC) industries make cost-effective decisions in selecting between these two technologies with respect to their settings, this paper makes an attempt to measure the accuracy, quality, time efficiency, and cost of applying image-based and time-of-flight-based technologies to conduct as-built 3D reconstruction of infrastructure. In this paper, a novel comparison method is proposed, and preliminary experiments are conducted. The results reveal that if the accuracy and quality level desired for a particular application is not high (i.e., error < 10 cm, and completeness rate > 80%), image-based technologies constitute a good alternative for time-of-flight-based technologies and significantly reduce the time and cost needed for collecting the data on site.
Resumo:
The US National Academy of Engineering recently identified restoring and improving urban infrastructure as one of the grand challenges of engineering. Part of this challenge stems from the lack of viable methods to map/label existing infrastructure. For computer vision, this challenge becomes “How can we automate the process of extracting geometric, object oriented models of infrastructure from visual data?” Object recognition and reconstruction methods have been successfully devised and/or adapted to answer this question for small or linear objects (e.g. columns). However, many infrastructure objects are large and/or planar without significant and distinctive features, such as walls, floor slabs, and bridge decks. How can we recognize and reconstruct them in a 3D model? In this paper, strategies for infrastructure object recognition and reconstruction are presented, to set the stage for posing the question above and discuss future research in featureless, large/planar object recognition and modeling.
Innovative Stereo Vision-Based Approach to Generate Dense Depth Map of Transportation Infrastructure
Resumo:
Three-dimensional (3-D) spatial data of a transportation infrastructure contain useful information for civil engineering applications, including as-built documentation, on-site safety enhancements, and progress monitoring. Several techniques have been developed for acquiring 3-D point coordinates of infrastructure, such as laser scanning. Although the method yields accurate results, the high device costs and human effort required render the process infeasible for generic applications in the construction industry. A quick and reliable approach, which is based on the principles of stereo vision, is proposed for generating a depth map of an infrastructure. Initially, two images are captured by two similar stereo cameras at the scene of the infrastructure. A Harris feature detector is used to extract feature points from the first view, and an innovative adaptive window-matching technique is used to compute feature point correspondences in the second view. A robust algorithm computes the nonfeature point correspondences. Thus, the correspondences of all the points in the scene are obtained. After all correspondences have been obtained, the geometric principles of stereo vision are used to generate a dense depth map of the scene. The proposed algorithm has been tested on several data sets, and results illustrate its potential for stereo correspondence and depth map generation.