124 resultados para High Lift Systems Design
Resumo:
Concepts of function are central to design but statements about a device's functions can be interpreted in different ways. This raises problems for researchers trying to clarify the foundations of design theory and for those developing design support-tools that can represent and reason about function. By showing how functions relate systems to their sub-systems and super-systems, this article illustrates some limitations of existing function terminology and some problems with existing function statements. To address these issues, a system-relative function terminology is introduced. This is used to demonstrate that systems function not only with respect to their most local super-system, but also with respect to their more global super-systems. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
Leading edge vortices are considered to be important in generating the high lift coefficients observed in insect flight and may therefore be relevant to micro-air vehicles. A potential flow model of an impulsively started flat plate, featuring a leading edge vortex (LEV) and a trailing edge vortex (TEV) is fitted to experimental data in order to provide insight into the mechanisms that influence the convection of the LEV and to study how the LEV contributes to lift. The potential flow model fits the experimental data best with no bound circulation, which is in accordance with Kelvin's circulation theorem. The lift-to-drag ratio is well approximated by the function 'cot α' for α > 15°, which supports the tentative conclusion that shortly after an impulsive start, at post-stall angles of attack, lift is caused non-circulatory forces and by the action of the LEV as opposed to bound circulation. Copyright © 2012 by C. W. Pitt Ford.
Resumo:
The paper presents two mechanisms for global oscillations in feedback systems, based on bifurcations in absolutely stable systems. The external characterization of the oscillators provides the basis for a (energy-based) dissipativity theory for oscillators, thereby opening new possibilities for rigorous stability analysis of high-dimensional systems and interconnected oscillators. © 2004 Elsevier B.V. All rights reserved.
Resumo:
The transition of a separated shear layer over a flat plate, in the presence of periodic wakes and elevated free-stream turbulence (FST), is numerically investigated using Large Eddy Simulation (LES). The upper wall of the test section is inviscid and specifically contoured to impose a streamwise pressure distribution over the flat plate to simulate the suction surface of a low-pressure turbine (LPT) blade. Two different distributions representative of a 'high-lift' and an 'ultra high-lift' turbine blade are examined. Results obtained from the current LES compare favourably with the extensive experimental data previously obtained for these configurations. The LES results are then used to further investigate the flow physics involved in the transition process.In line with experimental experience, the benefit of wakes and FST obtained by suppressing the separation bubble, is more pronounced in 'ultra high-lift' design when compared to the 'high-lift' design. Stronger 'Klebanoff streaks' are formed in the presence of wakes when compared to the streaks due to FST alone. These streaks promoted much early transition. The weak Klebanoff streaks due to FST continued to trigger transition in between the wake passing cycles.The experimental inference regarding the origin of Klebanoff streaks at the leading edge has been confirmed by the current simulations. While the wake convects at local free-stream velocity, its impression in the boundary layer in the form of streaks convects much slowly. The 'part-span' Kelvin-Helmholtz structures, which were observed in the experiments when the wake passes over the separation bubble, are also captured. The non-phase averaged space-time plots manifest that reattachment is a localized process across the span unlike the impression of global reattachment portrayed by phase averaging. © 2013 Elsevier Inc.
Resumo:
Aircraft in high-lift configuration shed multiple vortices. These generally merge to form a downstream wake consisting of two counter-rotating vortices of equal strength. The understanding of the merger of two co-rotating trailing vortices is important in evaluating the separation criteria for different aircraft to prevent wake vortex hazards during landing and take-off. There is no existing theoretical method on the basis of which such norms can be set. The present study is aimed at gaining a better understanding of the behaviour of wake vortices behind the aircraft. Two dimensional studies are carried out using the vortex blob method and compared with Bertenyi's experiment. It is shown that inviscid two dimensional effects are insufficient to explain the observations. Three dimensional studies, using the vortex filament method, are applied to the same test case. Two Lamb-Oseen profile vortices of the same dimensions and initial separation as the experiment are allowed to evolve from a straight starting condition until a converged steady flow is achieved. The results obtained show good agreement with the experimental distance to merger. Core radius and separation behaviour is qualitatively similar to experiment, with the exception of rapid increases at first. This may be partially attributable to the choice of filament-element length, and recommended further work includes a convergence study for this parameter. Copyright © 2005 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.
Resumo:
Like large insects, micro air vehicles operate at low Reynolds numbers O(1; 000 - 10; 000) in a regime characterized by separated flow and strong vortices. The leading-edge vortex has been identified as a significant source of high lift on insect wings, but the conditions required for the formation of a stably attached leading-edge vortex are not yet known. The waving wing is designed to model the translational phase of an insect wing stroke by preserving the unsteady starting and stopping motion as well as three-dimensionality in both wing geometry (via a finite-span wing) and kinematics (via wing rotation). The current study examines the effect of the spanwise velocity gradient on the development of the leading-edge vortex along the wing as well as the effects of increasing threedimensionalityby decreasing wing aspect ratio from four to two. Dye flow visualization and particle image velocimetry reveal that the leading-edge vortices that form on a sliding or waving wing have a very high aspect ratio. The structure of the flow is largely two-dimensional on both sliding and waving wings and there is minimal interaction between the leading-edge vortices and the tip vortex. Significant spanwise flow was observed on the waving wing but not on the sliding wing. Despite the increased three-dimensionality on the aspect ratio 2 waving wing, there is no evidence of an attached leading-edge vortex and the structure of the flow is very similar to that on the higher-aspect-ratio wing and sliding wing. © Copyright 2010.
Resumo:
This scoping study proposes using mixed nitride fuel in Pu-based high conversion LWR designs in order to increase the breeding ratio. The higher density fuel reduces the hydrogen-to-heavy metal ratio in the reactor which results in a harder spectrum in which breeding is more effective. A Resource-renewable Boiling Water Reactor (RBWR) assembly was modeled in MCNP to demonstrate this effect in a typical high conversion LWR design. It was determined that changing the fuel from (U,TRU)O2 to (U,TRU)N in the assembly can increase its fissile inventory ratio (fissile Pu mass divided by initial fissile Pu mass) from 1.04 to up to 1.17. © 2011 Elsevier Ltd. All rights reserved.
Resumo:
The understanding of low Reynolds number aerodynamics is becoming increasingly prevalent with the recent surge in interest in advanced Micro-Air Vehicle (MAV) technology. Research in this area has been primarily stimulated by a military need for smaller, more versatile, autonomous, surveillance aircraft. The mechanism for providing the high lift coefficient required forMAV applications is thought to be largely influenced by the formation of a Leading Edge Vortex (LEV). This paper analyses experimentally, the influence of the LEV effect for a flat plate wing (AR = 4) under fast and slow pitch-up motions at Re =10,000 using a combination of dye flow visualisation and PIV measurements. It is found that a fast pitch over 1c shows a flow topology dominant LEV, while for a slow pitch case over 6c, the flow is largely separated. The development of the suction surface flow and the LEV was strongly correlated with the kinematics of the leading edge, suggesting that the effective local angle of incidence at the Leading Edge (LE) is of considerable significance in unsteady pitching motions. © 2013 by P.R.R.J Stevens.