88 resultados para Hierarchical document


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many data are naturally modeled by an unobserved hierarchical structure. In this paper we propose a flexible nonparametric prior over unknown data hierarchies. The approach uses nested stick-breaking processes to allow for trees of unbounded width and depth, where data can live at any node and are infinitely exchangeable. One can view our model as providing infinite mixtures where the components have a dependency structure corresponding to an evolutionary diffusion down a tree. By using a stick-breaking approach, we can apply Markov chain Monte Carlo methods based on slice sampling to perform Bayesian inference and simulate from the posterior distribution on trees. We apply our method to hierarchical clustering of images and topic modeling of text data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents some developments in query expansion and document representation of our spoken document retrieval system and shows how various retrieval techniques affect performance for different sets of transcriptions derived from a common speech source. Modifications of the document representation are used, which combine several techniques for query expansion, knowledge-based on one hand and statistics-based on the other. Taken together, these techniques can improve Average Precision by over 19% relative to a system similar to that which we presented at TREC-7. These new experiments have also confirmed that the degradation of Average Precision due to a word error rate (WER) of 25% is quite small (3.7% relative) and can be reduced to almost zero (0.2% relative). The overall improvement of the retrieval system can also be observed for seven different sets of transcriptions from different recognition engines with a WER ranging from 24.8% to 61.5%. We hope to repeat these experiments when larger document collections become available, in order to evaluate the scalability of these techniques.