50 resultados para Hermite interpolation
Resumo:
POMDP algorithms have made significant progress in recent years by allowing practitioners to find good solutions to increasingly large problems. Most approaches (including point-based and policy iteration techniques) operate by refining a lower bound of the optimal value function. Several approaches (e.g., HSVI2, SARSOP, grid-based approaches and online forward search) also refine an upper bound. However, approximating the optimal value function by an upper bound is computationally expensive and therefore tightness is often sacrificed to improve efficiency (e.g., sawtooth approximation). In this paper, we describe a new approach to efficiently compute tighter bounds by i) conducting a prioritized breadth first search over the reachable beliefs, ii) propagating upper bound improvements with an augmented POMDP and iii) using exact linear programming (instead of the sawtooth approximation) for upper bound interpolation. As a result, we can represent the bounds more compactly and significantly reduce the gap between upper and lower bounds on several benchmark problems. Copyright © 2011, Association for the Advancement of Artificial Intelligence. All rights reserved.
Resumo:
Surface temperature measurements from two discs of a gas turbine compressor rig are used as boundary conditions for the transient conduction solution (inverse heat transfer analysis). The disc geometry is complex, and so the finite element method is used. There are often large radial temperature gradients on the discs, and the equations are therefore solved taking into account the dependence of thermal conductivity on temperature. The solution technique also makes use of a multigrid algorithm to reduce the solution time. This is particularly important since a large amount of data must be analyzed to obtain correlations of the heat transfer. The finite element grid is also used for a network analysis to calculate the radiant heat transfer in the cavity formed between the two compressor discs. The work discussed here proved particularly challenging as the disc temperatures were only measured at four different radial locations. Four methods of surface temperature interpolation are examined, together with their effect on the local heat fluxes. It is found that the choice of interpolation method depends on the available number of data points. Bessel interpolation gives the best results for four data points, whereas cubic splines are preferred when there are considerably more data points. The results from the analysis of the compressor rig data show that the heat transfer near the disc inner radius appears to be influenced by the central throughflow. However, for larger radii, the heat transfer from the discs and peripheral shroud is found to be consistent with that of a buoyancy-induced flow.
Resumo:
We offer a solution to the problem of efficiently translating algorithms between different types of discrete statistical model. We investigate the expressive power of three classes of model-those with binary variables, with pairwise factors, and with planar topology-as well as their four intersections. We formalize a notion of "simple reduction" for the problem of inferring marginal probabilities and consider whether it is possible to "simply reduce" marginal inference from general discrete factor graphs to factor graphs in each of these seven subclasses. We characterize the reducibility of each class, showing in particular that the class of binary pairwise factor graphs is able to simply reduce only positive models. We also exhibit a continuous "spectral reduction" based on polynomial interpolation, which overcomes this limitation. Experiments assess the performance of standard approximate inference algorithms on the outputs of our reductions.
Resumo:
The details of the Element Free Galerkin (EFG) method are presented with the method being applied to a study on hydraulic fracturing initiation and propagation process in a saturated porous medium using coupled hydro-mechanical numerical modelling. In this EFG method, interpolation (approximation) is based on nodes without using elements and hence an arbitrary discrete fracture path can be modelled.The numerical approach is based upon solving two governing partial differential equations of equilibrium and continuity of pore water simultaneously. Displacement increment and pore water pressure increment are discretized using the same EFG shape functions. An incremental constrained Galerkin weak form is used to create the discrete system of equations and a fully implicit scheme is used for discretization in the time domain. Implementation of essential boundary conditions is based on the penalty method. In order to model discrete fractures, the so-called diffraction method is used.Examples are presented and the results are compared to some closed-form solutions and FEM approximations in order to demonstrate the validity of the developed model and its capabilities. The model is able to take the anisotropy and inhomogeneity of the material into account. The applicability of the model is examined by simulating hydraulic fracture initiation and propagation process from a borehole by injection of fluid. The maximum tensile strength criterion and Mohr-Coulomb shear criterion are used for modelling tensile and shear fracture, respectively. The model successfully simulates the leak-off of fluid from the fracture into the surrounding material. The results indicate the importance of pore fluid pressure in the initiation and propagation pattern of fracture in saturated soils. © 2013 Elsevier Ltd.
Resumo:
Statistical analysis of diffusion tensor imaging (DTI) data requires a computational framework that is both numerically tractable (to account for the high dimensional nature of the data) and geometric (to account for the nonlinear nature of diffusion tensors). Building upon earlier studies exploiting a Riemannian framework to address these challenges, the present paper proposes a novel metric and an accompanying computational framework for DTI data processing. The proposed approach grounds the signal processing operations in interpolating curves. Well-chosen interpolating curves are shown to provide a computational framework that is at the same time tractable and information relevant for DTI processing. In addition, and in contrast to earlier methods, it provides an interpolation method which preserves anisotropy, a central information carried by diffusion tensor data. © 2013 Springer Science+Business Media New York.